Hypersurface

{{#ifeq:||Un article de Ziki, l'encyclopédie libre.|Une page de Ziki, l'encyclopédie libre.}}
Révision datée du 22 septembre 2023 à 06:04 par >Dadrik (→‎growthexperiments-addlink-summary-summary:3|0|0)
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)

{{#invoke:Bandeau|ébauche}} En géométrie, une hypersurface est une généralisation du concept d'hyperplan, de courbe plane et de surface. Une hypersurface est une variété de dimension N - 1, qui est intégrée dans un espace de dimension N, généralement un espace euclidien ou un espace affine.

  • Dans une espace de dimension 3, une hypersurface est une surface
  • Dans une espace de dimension 2, une hypersurface est une ligne

Une hypersurface est souvent définie par une seule équation du type f(x1,x2,...xN)=0.


En géométrie différentielle, une hypersurface d'une variété différentielle de dimension N, est une sous-variété de codimension 1, c'est-à-dire de dimension N-1.

Résultats principaux

Modèle:Portail