Daniel Quillen
Modèle:Voir homonymes Modèle:Infobox Biographie2
Daniel Gray (« Dan ») Quillen (22<ref>Modèle:Article</ref> ou 27<ref>Modèle:Article</ref> juin 1940 – 30 avril 2011) est un mathématicien américain lauréat de la médaille Fields en 1978 et du prix Cole en 1975 pour ses travaux sur la K-théorie algébrique dont il est réputé être l'architecte principal.
Biographie
Daniel Quillen est né à Orange dans le New Jersey. Après la Newark Academy, il effectue ses études à Harvard et y obtient son BA en 1961 puis son doctorat (PhD) en 1964 sous la direction de Raoul Bott, avec une thèse sur les équations aux dérivées partielles. Il bénéficie d'une Modèle:Lien en 1959<ref name=putnam> Modèle:Lien web</ref>. Après un passage au MIT (Massachusetts Institute of Technology), il est professeur à l'université d'Oxford (Grande-Bretagne), au Magdalen College, où il est titulaire de 1984 à 2006 de la Modèle:Lien.
Quillen obtient un poste au Massachusetts Institute of Technology après son doctorat. Néanmoins, il passe également plusieurs années dans diverses universités. Il se rend en France à deux reprises : d'abord grâce à une bourse de recherches de la Alfred P. Sloan Foundation à Paris, en 1968-69, où il est grandement influencé par Alexandre Grothendieck, puis en 1973–74 grâce à une bourse Guggenheim. En 1969–70, il se rend également à l'Institute for Advanced Study à Princeton, grâce à l'influence de Michael Atiyah. En 1978, Quillen reçoit la médaille Fields lors du Congrès international des mathématiciens à Helsinki<ref>Modèle:Lien web.</ref>.
Quillen prend sa retraite fin 2006. Il meurt de complications liées à la maladie d'Alzheimer le 30 avril 2011 à l'âge de 70 ans, en Floride<ref name=commalg>Modèle:Lien web</ref>.
Travaux
Ses contributions majeures aux mathématiques portent sur l'homotopie rationnelle et la K-théorie algébrique supérieure dont il est le fondateur. Comme mentionné spécifiquement lors de l'attribution de la médaille Fields, sa contribution la plus célèbre est sa formulation de la K-théorie algébrique supérieure en 1972. Ce nouvel , formulé en termes d'homotopie, a montré son efficacité dans la formulation et la résolution de problèmes majeurs en algèbre, en particulier en théorie des anneaux et théorie des modules. Plus généralement, Quillen a développé des outils (notamment sa théorie de catégories de modèles) qui permettent une application des résultats algébro-topologiques à d'autres contextes.
Avant ses travaux révolutionnaires sur la K-théorie algébrique, Quillen a travaillé sur la conjecture d'Adams , formulée par Frank Adams en théorie de l'homotopie<ref name=segal>Modèle:Article</ref>. Sa preuve de la conjecture utilise des techniques issues de la représentation modulaire de la théorie des groupes, qu'il a ensuite appliquées pour travailler sur la cohomologie de groupes et la K-théorie algébrique. Il a également travaillé sur le Modèle:Lien, montrant que sa loi de groupe formel est essentiellement la loi universelle.
Parmi ses autres travaux, il a aussi fourni une preuve du théorème de Quillen–Suslin, également appelé conjecture de Serre, à propos de la trivialité des fibrés vectoriels algébriques dans un espace affine. Il est également l'architecte, avec Dennis Sullivan, de la théorie d'homotopie rationnelle<ref> Modèle:Article.</ref>.
Il a introduit le Modèle:Lien et le Modèle:Lien.
Distinctions
La médaille Fields a récompensé en 1978 son travail en topologie algébrique et en K-théorie. Il a également reçu le prix Cole en 1975.
Sélection de publications
- Modèle:Ouvrage (Quillen's Q-construction)
Références
<references />
Voir aussi
Articles connexes
- Catégorie de modèles
- Modèle:Lien (démontrée par Quillen en 1971)
- Théorème de Quillen-Suslin