Graphite

{{#ifeq:||Un article de Ziki, l'encyclopédie libre.|Une page de Ziki, l'encyclopédie libre.}}

Modèle:Infobox Minéral

Le graphite est une espèce minérale qui est, avec le diamant, la lonsdaléite et la chaoite, l'un des allotropes naturels du carbone.

Sa formule chimique est « C » mais les formes natives permettent de retrouver des traces d'hydrogène (« H »), d'azote (« N »), d'oxygène (« O »), de silicium (« Si »), d'aluminium (« Al »), de fer (« Fe ») ou encore d'argile.

Inventeur et étymologie

Gîtologie

C'est un élément natif dont les gîtes se sont formés aux dépens de roches carbonées (roches riches en carbone, du type charbon). Constitué de carbone pur, il correspond au degré ultime de houillification<ref>Modèle:Ouvrage.</ref> atteint dans des conditions de métamorphisme régional ou de contact (pegmatites ou gîtes hydrothermaux dans l'auréole de contact de certains granites)<ref name="Chauris">Modèle:Article.</ref>. Il peut aussi se former par réduction des carbonates. Il se présente dans les gîtes Modèle:Citation.
Il est aussi présent dans les météorites.

Au Modèle:S mini- siècleModèle:Vérification siècle, la prospection de gisements riches en charbon conduit à interpréter à tort les roches graphiteuses (schistes, quartzites), de teinte noirâtre, comme étant charbonneuses<ref>Modèle:Article.</ref>.

Cristallographie

La structure du graphite est constituée de feuillets hexagonaux non compacts, nommés graphènes, séparés d'environ Modèle:Unité/2 le long de la direction de leur normale. Dans chaque feuillet, chaque atome de carbone est fortement lié par des liaisons covalentes de type sigma pour ses 3 électrons sp2, et des liaisons covalentes de type π pour son autre électron p, Ces liaisons π sont des liaisons conjuguées avec les trois atomes voisins, les électrons y sont très mobiles ce qui explique la grande conductivité électrique et thermique ainsi que la couleur noire du graphite. Modèle:Référence nécessaire<ref>Modèle:Article</ref>.

Propriétés physiques

Le graphite est la forme stable du carbone à température et à pressions ordinaires.

L'apparence du graphite est celle d'un solide noir à l'éclat submétallique ; sa dureté est faible, entre 1 et 2 sur l'échelle de Mohs.

En raison de sa structure en feuillets, toutes les propriétés physiques du graphite sont anisotropes. En particulier, la conductivité électrique est très différente dans le plan des feuillets et dans la direction perpendiculaire.

Polytypisme

Le graphite existe en deux polytypes :

  • graphite-2H, système cristallin hexagonal, classe cristalline dihexagonale-bipyramidale, groupe d'espace P 63/mmc, empilement de type ABAB où le plan B est translaté de <math>a/\sqrt{3}</math> par rapport au plan A. Bien que sa structure soit analogue à celle des métaux qui cristallisent avec empilement hexagonal compact, le graphite est un non-métal. Il possède une certaine conductivité électrique, sa résistivité est de 50 µΩ.m, soit 2900 fois celle du cuivre.
  • graphite-3R, trigonal à réseau rhomboédrique, empilement de type ABCABC. La structure rhomboédrique est instable : elle se produit par moulage et disparaît lors d'un recuit. On ne la trouve jamais comme forme pure, mais seulement comme tendance à l’empilement ABC dans les cristaux hexagonaux primaires.

Le charbon existe dans tous les états intermédiaires entre charbon amorphe et graphite hexagonal. On parle de graphite « lubricostratique » (du latin lubricare, « rendre glissant ») quand les couches sont déplacées parallèlement au hasard, et de graphite « turbostratique » (du latin turbo, « tourbillon ») si elles sont aussi tournées au hasard.

Synonymie

  • crayon de plomb<ref>Pierre-Joseph Buc'hoz - Dictionnaire mineralogique et hydrologique de la France, Volume 3 1774 p.590</ref>
  • graphitoid (Shepard)
  • mélangraphite<ref>Albert Auguste Cochon de Lapparent - Cours de minéralogie 1908 p.737</ref>
  • mica des peintres<ref>Auguste Drapiez - Dictionnaire classique des sciences naturelles 1840 p.330</ref>
  • mine de plomb<ref>Charles S. Sonnini - Nouveau dictionnaire d'histoire naturelle Volume 20 1818 - p.505</ref>
  • plombagine<ref>Louis Jacques Thenard - Traité de chimie élémentaire, théorique et pratique, Volume 1 1817 p.378</ref>

Variété

  • cliftonite (Fletcher) : octaèdres de graphite en pseudomorphose de kamacite. Cette variété a un temps été considérée comme un allotrope du carbone, voire comme une pseudomorphose après le diamant. Elle se rencontre dans certaines météorites de fer.

Utilisations

Fichier:Electrodes.png
Électrodes d'un four à arc.

Le graphite a de nombreuses applications industrielles, sous diverses formes naturelles ou synthétiques :

Il est également utilisé en médecine comme absorbant en cas d'intoxication par voie orale et en usage militaire pour endommager les centrales électriques comme bombe au graphite.

Dans les arts plastiques, il est utilisé pour le dessin. Il sert en particulier à fabriquer des crayons, souvent sous l'appellation incorrecte de « mine de plomb ».

L'utilisation domestique la plus courante est le crayon.

Il peut aussi être utilisé comme composite d'alliage (avec le Titane ou Fibre de verre) dans la fabrication des cadres de raquettes de tennis (existe en Aluminium aussi).

Une forme pyrolytique du graphite est utilisée dans la fabrication de grilles pour les tétrodes de très grande puissance dans le domaine de la radiodiffusion. On peut citer par exemple la tétrode TH539 qui a été utilisée jusqu'en Modèle:Date- sur l'un des deux blocs émetteurs ondes longues d'Allouis de 1 000 kW.

Production

Le graphite synthétique est généralement élaboré par le procédé Acheson : les principaux producteurs sont, en 2020, Showa Denko Carbon, SGL Carbon, Schunk Kohlenstofftechnik (Allemagne), Imerys (France), Tōkai Carbon (Japon) et Morgan Advanced Materials (Grande-Bretagne).

En 2019, l'agence australienne d'énergie renouvelable (ARENA) a annoncé 9,41 millions de dollars australiens d'aides pour un projet du Groupe Hazer (compagnie d'énergie renouvelable australienne) de conversion du biogaz (ici issu de méthanisation de boues d’épuration) en graphite et en hydrogène (usine démonstratrice de $10,72 millions USD à Munster, Australie de l'Ouest)<ref>Liz Gyekye (2019) [ https://biomarketinsights.com/australia-backs-tech-that-converts-biogas-into-hydrogen-and-graphite/ « Australia backs tech that converts biogas into hydrogen and graphite »], Biomarketing sights ; 4 sept 2019</ref>.

Notes et références

Modèle:Références

Voir aussi

Modèle:Autres projets

Liens externes

Modèle:Palette

Modèle:Portail