Trou de ver
Modèle:Voir homonymes Modèle:Redirect Modèle:Confusion
Un trou de ver (Modèle:En anglais) est, en astrophysique, un objet hypothétique qui relierait deux feuillets distincts ou deux régions distinctes de l'espace-temps et se manifesterait, d'un côté, comme un trou noir et, de l'autre côté, comme un trou blanc<ref>Entrée Modèle:Citation, dans Modèle:Ouvrage.</ref>.
Un trou de ver formerait un raccourci à travers l'espace-temps. Pour le représenter plus simplement, on peut figurer l'espace-temps non en quatre dimensions mais en deux, à la manière d'un tapis ou d'une feuille de papier, dont la surface serait pliée sur elle-même dans un espace à trois dimensions. L'utilisation du raccourci « trou de ver » permettrait un voyage du point A directement au point B en un temps considérablement réduit par rapport au temps qu'il faudrait pour parcourir la distance séparant ces deux points de manière linéaire, à la surface de la feuille. Visuellement, il faut s'imaginer voyager non pas à la surface de la feuille de papier, mais à travers le trou de ver ; la feuille, étant repliée sur elle-même, permet au point A de toucher directement le point B, la rencontre des deux points correspondant au trou de ver.
L'utilisation d'un trou de ver permettrait théoriquement le voyage d'un point de l'espace à un autre (déplacement dans l'espace), le voyage d'un point à l'autre du temps (déplacement dans le temps), et le voyage d'un point de l'espace-temps à un autre (déplacement à travers l'espace et, simultanément, à travers le temps).
Les trous de ver sont des concepts purement théoriques : l'existence et la formation physique de tels objets dans l'Univers n'ont pas été vérifiées. Ils ne doivent pas être confondus avec les trous noirs, dont l'existence a été vérifiée en 2019 et dont le champ gravitationnel est si intense qu’il empêche toute forme de matière de s'en échapper.
Historique
Le physicien autrichien Ludwig Flamm (1885-1964) est parfois présenté comme étant le premier à avoir suggéré, dès 1916<ref>Modèle:Article</ref>, l'existence des trous de ver. Mais la communauté scientifique s'accorde<ref>Modèle:Article</ref> pour considérer que leur existence n'a été suggérée qu'en 1935, par Albert Einstein et Nathan Rosen<ref>Modèle:Article</ref>.
Les trous de ver (Modèle:Lang) doivent leur nom à Charles W. Misner et John A. Wheeler qui désignèrent ainsi en 1957 les propriétés de connexions des différents points de l'espace<ref>Modèle:Article.</ref>. Le nom vient de l'analogie de l'asticot et de la pomme, symbole de la gravité depuis Isaac Newton : comme le ver, en rongeant la pomme, peut se rendre directement à un point diamétralement opposé, un vaisseau spatial pourrait utiliser le trou de ver, à la façon d'un raccourci, pour ressortir ailleurs dans l'espace et dans le temps<ref>Modèle:Lien web.</ref>.
Quelques années plus tard à l’université Harvard, Stephen Hawking et Richard Coleman reprirent le concept de Wheeler et suggérèrent que l'espace-temps pouvait être soumis à l'effet tunnel précité, reprenant l'idée avancée par Hugh Everett. À l'instar des électrons qui peuvent sauter d'un point à l'autre de l'espace, l'Univers ferait de même. L'effet tunnel créerait des ouvertures dans l'espace-temps qui conduiraient à d'autres univers, des univers cul-de-sac ou tout aussi vastes que le nôtre.
En 2013, Juan Maldacena et Leonard Susskind ont proposé une conjecture qui établit un lien entre l'intrication quantique et le trou de ver<ref>Modèle:Article.</ref> : la conjecture ER=EPR<ref>Modèle:Article.</ref>.
Présentation générale
À l'heure actuelle, différents types de trous de ver ont été décrits de façon théorique :
- le trou de ver de Schwarzschild, infranchissable ;
- le trou de ver de Reissner-Nordstrøm ou de Kerr-Newman, franchissable mais dans un seul sens, pouvant contenir un trou de ver de Schwarzschild ;
- le trou de ver de Lorentz à masse négative, franchissable dans les deux sens.
Tous sont des solutions mathématiques plutôt que des objets concrets.
Ont également été distingués des trous de ver à symétrie sphérique, tels ceux de Schwarzschild et de Reissner-Nordstrøm, qui ne sont pas en rotation, et des trous de ver tels ceux de Kerr-Newmann qui tournent sur eux-mêmes.
La théorie d'Einstein précise qu'on peut fabriquer n'importe quel type de géométrie spatio-temporelle, statique ou dynamique. Toutefois, une fois la géométrie définie, ce sont les équations d'Einstein qui diront quel devra être le tenseur énergie-impulsion de la matière pour obtenir cette géométrie spatiale. En général, les solutions de trous de ver statiques requièrent une masse négative.
Einstein et Rosen ont sérieusement suggéré que les singularités pouvaient mener à d'autres endroits de l'Univers, d'autres régions de l'espace et du temps. Ces connexions spatio-temporelles sont connues sous le nom de « ponts d'Einstein-Rosen ». Mais ni l'un ni l'autre n'entrevoyaient une possibilité d'entretenir ces connexions en raison du caractère instable des fluctuations quantiques. Selon la formule de John L. FriedmanModèle:Qui de l'université de Californie à Santa Barbara, il s'agit d'une « censure topologique »Modèle:Référence nécessaire.
Ces trous de vers dits de Lorentz requièrent de la matière exotique pour rester ouverts car celle-ci demande moins d'énergie que le vide quantique, qui subit des fluctuations d'amplitude variables. Il peut s'agir d'énergie négative Modèle:Refnec
Pour approfondir les conséquences de la relativité générale, Kip Thorne et Richard Morris du Caltech ont tenté de découvrir par le biais de la physique quantique de nouvelles particules capables d'entretenir les trous de ver de Wheeler. Celles-ci ont fait apparaître d'hypothétiques « sas de liaisons » parcourus par des « voyageurs de Langevin ». La littérature de science-fiction s'en est grandement inspirée<ref>Modèle:Lien web.</ref>.
Selon John Wheeler, deux singularités pourraient être reliées par un trou de ver, sorte de sas entre deux régions éloignées de l’univers. Entretenir un tel passage et lui donner une taille macroscopique reste un défi théorique. En effet ce « pont » est à l’échelle de Planck : il mesure Modèle:Unité et est instable ; il se referme sur lui-même en l’espace de Modèle:Unité. Si on essaye de l’agrandir, il s'autodétruit. Le trou de ver appartient à la mousse quantique et obéit aux lois probabilistes.
Au contraire d’une singularité, un trou de ver est « nu », il demeure visible et, plus extraordinaire encore, il permet de voyager dans le temps en fonction du sens emprunté.
Exemple : le trou de ver de Morris-Thorne
Modèle:Ancre Le Modèle:Terme défini (Modèle:En anglais)Modèle:Sfn est un trou de ver traversable, décrit par la métrique du même nom.
Ses éponymes sont Michael S. Morris et Kip S. Thorne, qui ont publié leur solution en Modèle:Date-Modèle:Sfn,Modèle:Sfn dans l'Modèle:Langue. Elle consiste en une adaptation du sujet de l'examen final d'un cours d'introduction à la relativité générale, donné au Modèle:Langue en Modèle:Date-Modèle:Sfn.
La métrique de Morris-Thorne s'écritModèle:Sfn,Modèle:Sfn :
- <math>\mathrm{d}s^2=-c^2\mathrm{d}t^2+\mathrm{d}l^2+\left(b_0^2+l^2\right)\left(\mathrm{d}\theta^2+\sin^2\theta\,\mathrm{d}\phi^2\right)</math>,
où :
- <math>\left(x^\mu\right)=\left(ct,l,\theta,\phi\right)</math> sont les coordonnées d'espace-temps :
- <math>t</math> est la coordonnée temporelle,
- <math>l</math> est la coordonnée radiale,
- <math>\theta</math> est la colatitude,
- <math>\phi</math> est la longitude,
- <math>b_0^2</math> est une constante,
- <math>c</math> est la vitesse de la lumière dans le vide.
En coordonnées de Schwarzschild, elle s'écritModèle:Sfn :
- <math>\mathrm{d}s^2=-c^2\mathrm{d}t^2+\frac{\mathrm{d}r^2}{1-\frac{b_0^2}{r^2}}+r^2\left(\mathrm{d}\theta^2+\sin^2\theta\,\mathrm{d}\phi^2\right)</math>,
avec <math>r^2=b_0^2+l^2</math>.
La « bouche » du trou de ver est une hypersurface ayant la topologie d'une sphère d'aire <math>A=4\pi\left(b_0^2+l^2\right)</math>Modèle:Sfn.
La « gorge » du trou de ver est localisée en <math>l=0</math>Modèle:Sfn.
Dans la fiction
Modèle:Article détaillé Le concept des trous de ver est très utilisé dans la science-fiction pour autoriser le voyage dans l'espace, voire dans le temps. Il est souvent utilisé comme prétexte à la découverte de lieux inaccessibles par des moyens conventionnels, et donc à des rencontres avec diverses civilisations ou espèces inconnues. Voici des exemples d'œuvres traitant des trous de vers et de leur utilisation.
Littérature et bande dessinée
Dans la série des romans autour de Honor Harrington se passant dans l'Honorverse créé par David Weber, les trous de ver sont utilisés pour les trajets spatiaux et jouent un rôle important dans l'économie du royaume de Manticore.
Dans Lumière des jours enfuis, publié en 2000, Arthur C. Clarke et Stephen Baxter racontent qu'en 2033, une équipe de chercheurs parvient à transmettre des images par un trou de ver.
Dans la série de bande dessinée de science-fiction Universal War One, l’auteur, Denis Bajram, place la notion de trou de ver au centre de l’intrigue de son œuvre.
Dans la série La Saga du Commonwealth de Peter F. Hamilton, les trous de ver sont devenus, dans le futur, un moyen de transport courant pour se déplacer de planète en planète. Ils sont décrits comme étant très fins, composés d'énergie exotique et modulables en fonction de la quantité d'énergie utilisée pour les créer.
Cette notion est de plus en plus fréquente dans la littérature « Hard science-fiction » : on peut citer Stephen Baxter (Les Vaisseaux du temps, Retour sur Titan, Singularité) ou John Clute (Appleseed), qui offrent une approche romancée de la théorie. Ce concept se retrouve en particulier dans les romans de type néo space opéra. Dans la série de romans The Expanse écrite par Corey James S.A., un trou de ver fabriqué par une ancienne puissance extra-terrestre permet d'accéder à un espace vide entouré de trous de ver ouvrant sur des systèmes planétaires lointains.
Cinéma et séries télévisées
Dans la série Sliders, un tel passage est appelé par erreur « pont Einstein-Rosen-Podolski » au lieu de « ponts d’Einstein-Rosen », par confusion avec le paradoxe Einstein-Podolsky-Rosen, lequel n’a rien à voir avec les trous de ver. Curieusement, le nom est resté chez quelques vulgarisateurs. Podolsky a donc vu son nom associé à un objet particulier de la relativité générale sans avoir travaillé dans ce domaine.
Dans le film Contact est mentionnée une série de vortex appelée « pont d'Einstein-Rosen ».
Toute la série Farscape repose sur la découverte et la compréhension des trous de ver (wormholes en VO, vortex en VF), ceux-ci permettant de parcourir de très grandes distances, de voyager dans le temps et dans d’autres dimensions.
Dans Star Trek: Deep Space Nine, la traduction française utilise vortex pour le terme anglais wormhole, mais il s’agit bien d’un trou de ver utilisé pour voyager de et vers le Quadrant Gamma à Modèle:Unité de l'autre côté de la galaxie. La particularité de la station Deep Space Nine est d'être stratégiquement placée à proximité de ce trou de ver, d'où la grande importance de celui-ci dans la série.
Le film de science-fiction Stargate, la porte des étoiles et les séries Stargate SG-1, Stargate Atlantis et Stargate Universe font appel au concept de trou de ver. Un engin appelé porte des étoiles (en anglais Modèle:Lang) y relie différentes planètes de l’univers en créant un trou de ver de Reissner-Nordstrøm (ou de Kerr-Newman) artificiel. Cependant, un corps entier comme celui d'un homme ne survivrait pas au voyage dans le vortex, il est donc démolécularisé par la porte de départ et remolécularisé par la porte d'arrivée. En temps normal, la porte des étoiles ne permet pas de voyager dans le temps, sauf s'il y a un dysfonctionnement (dans un épisode, le vortex passe près d'une éruption solaire et est renvoyé vers la porte de départ mais dans une autre époque). De même, les trous de ver sont utilisés dans les séries Stargate pour faire traverser aux vaisseaux spatiaux de grandes distances en peu de temps en entrant en hyperespace, c'est-à-dire en créant un trou de ver de Reissner-Nordstrøm afin de voyager plus vite que la lumière.
Dans le film Donnie Darko, sorti en 2001, le trou de ver est un élément central permettant un voyage vers le passé.
Dans la série Fringe, l'un des personnages principaux crée un « pont d'Einstein-Rosen » pour voyager dans un univers alternatif. Cet acte sera cause de plusieurs autres trous de vers intempestifs dans les deux univers.
Dans le film Thor, le personnage de Jane Foster parle du Bifröst comme d'un Pont Einstein-Rosen.
Dans l'épisode Le Fantôme de Caliburn de la série Doctor Who, la femme disparue est en fait enfermée dans un univers en perdition, et le seul moyen d'y parvenir est d'utiliser un de ces trous de ver. Ces trous de ver sont aussi cités dans un autre épisode de cette série, L'Invasion des cubes : sept sont éparpillés sur Terre pour mener vers un vaisseau spatial en orbite autour de la planète, alors que des cubes sont envoyés pour arrêter les cœurs humains.
Dans le film Interstellar réalisé par Christopher Nolan et sorti en 2014, un des thèmes principaux est la théorie des trous de ver et son utilisation pour atteindre des planètes potentiellement colonisables situées à des années-lumière de la Terre. Le thème de la distorsion temporelle due à un trou noir y est également important.
Dans le film d'horreur Event Horizon de Paul W.S Anderson sorti en 1997, le système de propulsion du vaisseau est un prototype utilisant une singularité à l'aide d'un trou noir artificiel qui lui permet de créer son propre trou de ver. Ce concept est vulgarisé par le personnage incarné par Sam Neill à l'aide d'un poster érotique emprunté à un des membres de l'équipage.
Dans la série animée Voltron, le défenseur légendaire, les trous de vers sont associés à la magie altéenneModèle:Quoi et ne semblent pas obéir aux lois de la physique.
Dans la série Dark, le destin des protagonistes est influencé par l'existence d'un trou de ver permettant de voyager dans le temps, car le passé, le présent et le futur sont liés, formant une boucle temporelle.
Dans la deuxième saison de Star Trek: Discovery, la combinaison temporelle du Dr Burnham permet de voyager dans l'espace-temps au moyen de trous de ver générés par un cristal temporel embarqué.
Dans la saison 6 de the 100 apparaît « l’anomalie » dont on apprend dans la saison 7 qu’il s’agit de trous de ver permettant de se déplacer entre différentes planètes où le temps ne s’écoule pas à la même vitesse (sanctum, Bardo, la terre, etc.) ces trous de ver sont générés par un dispositif appelé la pierre, couverte de symboles et inventée par une civilisation disparue après leur ascension. parfois critiquée, l’influence évidente de stargate marque le scénario de la saison 7 de the 100.
Dans le jeu vidéo Chernobylite, le trou de ver permet au personnage principal de voyager d'un endroit à un autre de la région de Tchernobyl.
Les voyages dans le temps
Notes et références
Annexes
Bibliographie
- Modèle:Article.
- Stephen Hawking, Une brève histoire du temps. Du Big Bang aux trous noirs, Flammarion, 2005.
- Stephen Hawking et Roger Penrose, La nature de l'espace et du temps, Gallimard, 2003.
- Stephen Hawking, Trous noirs et bébés univers et autres essais, Odile Jacob, 2000.
- Kip S. Thorne, Trous noirs et distorsions du temps : l'héritage sulfureux d'Einstein, trad. Alain Bouquet et Jean Kaplan, Flammarion, 2009. Avec une préface de Stephen Hawking. Modèle:ISBN
- M. Begelmen et M. Rees, Gravity’s Fatal Attraction : Black Holes in the Universe, W.H.Freeman, 1996.
- Modèle:Article.
- Modèle:Article.
- Modèle:Article
- H. Everett III, Reviews of Modern Physics, 29, 1958, Modèle:P.Modèle:Refinc.
- Mika - "Akimmik" 1992 - Modèle:P.-712Modèle:Refinc.
- Modèle:Article
- Modèle:Article
- Modèle:Article
- Modèle:Article
- Modèle:Ouvrage.
- Sur le trou de ver de Morris-Thorne
Émission de radio
Articles connexes
Liens externes
- Modèle:Autorité
- Modèle:Dictionnaires
- Modèle:Bases
- {{#invoke:Langue|indicationDeLangue}} Un lien possible entre les trous de ver et l'intrication quantique a été découvert en 2013.
- {{#invoke:Langue|indicationDeLangue}} White holes and Wormholes, Andrew Hamilton, Université du Colorado
- {{#invoke:Langue|indicationDeLangue}} Des méta matériaux permettent d'émuler un trou de ver, selon la théorie d'alcubierre jusqu'à 25 % de la vitesse de la lumière