Analyse (mathématiques)

{{#ifeq:||Un article de Ziki, l'encyclopédie libre.|Une page de Ziki, l'encyclopédie libre.}}

Modèle:Voir homonymes

L'analyse (du grec Modèle:Grec ancien, « délier, examiner en détail, résoudre ») a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes. Cependant, elles peuvent aussi être définies et étudiées dans le contexte plus général des espaces métriques ou topologiques.

Histoire

Modèle:Article détaillé

Dans l'Antiquité et au Moyen Âge respectivement, les mathématiciens grecs et indiens se sont intéressés à l'infinitésimal et ont obtenu des résultats prometteurs mais fragmentaires.

L'analyse moderne a émergé au Modèle:Lien siècleModèle:Vérification siècle avec le calcul infinitésimal d'Isaac Newton et de Gottfried Wilhelm Leibniz.

Au Modèle:Lien siècleModèle:Vérification siècle, Cauchy introduisit le concept de suite de Cauchy et commença la théorie formelle de l'analyse complexe. Poisson, Liouville, Fourier et d'autres étudièrent les équations aux dérivées partielles et l'analyse harmonique. Riemann introduisit sa théorie de l'intégration, puis Karl Weierstrass sa définition des limites. Richard Dedekind construisit les nombres réels avec ses coupures. En même temps, on commença à étudier la « taille » des ensembles de réels.

En outre, des « monstres mathématiques » commencèrent à être créés. Dans ce contexte, Camille Jordan développa sa théorie sur la mesure et Georg Cantor, ce qu'on appelle aujourd'hui la théorie naïve des ensembles. Au début du Modèle:Lien siècleModèle:Vérification siècle, le calcul infinitésimal fut formalisé grâce à la théorie des ensembles. Henri Lebesgue Modèle:Pas clair <ref>Modèle:Ouvrage</ref>et David Hilbert introduisit les espaces de Hilbert. L'analyse fonctionnelle prit son essor dans les années 1920 avec Stefan Banach.

Sous-divisions

Aujourd'hui, l'analyse est divisée parmi les sous-thèmes suivants :

Autres :

Références

Modèle:Références

Bibliographie

Modèle:Palette Modèle:Portail