Catastrophe nucléaire de Tchernobyl

{{#ifeq:||Un article de Ziki, l'encyclopédie libre.|Une page de Ziki, l'encyclopédie libre.}}

Modèle:Autre Modèle:Voir homonymes Modèle:Infobox Événement

La catastrophe nucléaire de Tchernobyl (Modèle:MSAPI<ref group="alpha">Prononciation en français de France standardisé retranscrite selon la norme API.</ref>) est un accident nucléaire majeur survenu le Modèle:Date- à Modèle:Heure dans le réacteur no 4 de la centrale nucléaire V.I. Lénine de Tchernobyl, située à Modèle:Unité de la ville de Prypiat et à environ Modèle:Unité au nord de Kiev. Il s'agit de la plus importante catastrophe nucléaire, classée au Modèle:Nobr de l'échelle internationale des événements nucléaires, surpassant l'accident nucléaire de Fukushima survenu en 2011 et classé au même niveau.

L'accident est provoqué au cours d'un exercice de sécurité par l'augmentation incontrôlée de la puissance de l'unité no 4 de la centrale à plus de 100 fois sa puissance nominale, conduisant à la fusion du cœur du réacteur et à son explosion. Cette dernière détruit une partie du bâtiment dans lequel il se trouve ce qui conduit à l'exposition de son cœur à l'air libre. Des quantité massives de radiation sont alors rejetées dans l'environnement.

L'explosion est rapidement suivie par plusieurs interventions des pompiers de Prypiat dans la nuit pour tenter de combattre les feux. Une zone d'exclusion de Modèle:Unité autour de la centrale est créée Modèle:Heure après l'explosion conduisant principalement à l'évacuation de Prypiat. Cette dernière est poursuivie au début du mois de mai par l'élargissement de la zone d'exclusion à Modèle:Unité. Au total, Modèle:Nombre sont évacuées des environs de la centrale dans les mois suivants l'explosion.

Le traitement à long terme de la catastrophe fait intervenir des centaines de milliers de personnes (les liquidateurs) pour décontaminer, traiter et limiter les conséquences de l'explosion. Un premier sarcophage est construit au cours de l'année 1986 pour isoler le réacteur et ainsi limiter les rejets de radioactivité dans l'environnement. En 2012, la construction d'un second sarcophage (l'arche de Tchernobyl) débute et se termine en 2019.

Le gouvernement soviétique est accusé par la communauté internationale d'un manque de communication envers le reste du monde. Les autorités ne communiquent officiellement sur l'accident que plusieurs jours après, en minimisant la réalité de celui-ci. Au sein même du gouvernement, la communication est défaillante. Mikhaïl Gorbatchev, secrétaire général du Comité central n'est informé officiellement que le Modèle:Date- et doit faire appel au KGB pour obtenir des informations fiables.

L'événement a des conséquences sanitaires, écologiques et économiques importantes. Plus de Modèle:Nombre sont définitivement évacuées de la zone. L'accident aurait provoqué entre [[#Décès|43 et Modèle:Nombre]] selon les rapports des agences onusiennes publiés dans des revues scientifiques, voire davantage selon diverses analyses non publiées dans ces dernières.

Contexte

Localisation et construction de la centrale

Modèle:Article détaillé

Usine grise avec, à gauche une structure en construction et, au milieu, plusieurs cheminées et des grues.
La centrale nucléaire de Tchernobyl et le chantier de l'arche sur la gauche en Modèle:Date-.

La centrale nucléaire de Tchernobyl, construite entre 1970 et 1977, est située à 3 km de la ville de Prypiat, en Ukraine. Elle se trouve à environ Modèle:Nobr au nord de Kiev, à Modèle:Nobr au sud de la frontière avec la Biélorussie et à Modèle:Nobr au nord-ouest de la ville de Tchernobyl. En 1986, la population dans un rayon de Modèle:Unité autour de la centrale comprend entre Modèle:Unité<ref name="WN-CD"/>.

La ville de Prypiat, spécifiquement érigée dans les années 1970 pour loger les employés de la centrale nucléaire, compte au moment de l'accident environ Modèle:Unité. Souvent qualifiée de ville modèle de l'URSS, elle est aujourd'hui une ville fantôme<ref>Modèle:Lien web</ref>.

La centrale compte, au moment de l'accident, 4 réacteurs nucléaires. Le premier, construit avec la centrale, est mis en service en Modèle:Date-<ref>Modèle:Lien web.</ref>. Le second réacteur est mis en service l'année suivante et le troisième et quatrième sont respectivement mis en service en 1981 et 1983<ref name="WN-CD">Modèle:Lien web.</ref>. Jusqu'en 1989, deux réacteurs supplémentaires sont en construction, avant que le projet ne soit abandonné, principalement en raison de l'explosion du quatrième réacteur<ref>Modèle:Lien web</ref>. Les quatre réacteurs opérationnels sont de type RBMK-1000, de conception soviétique et d'une capacité unitaire de Modèle:Unité (Modèle:Unité)<ref name="WN-CD" />,<ref>Modèle:Ouvrage</ref>.

Tchernobyl est la première et la seule centrale nucléaire de type RBMK construite sur le sol ukrainien, et la troisième construite en Union soviétique avec celles de Léningrad et de Koursk<ref>Modèle:Lien web.</ref>.

Refroidissement du réacteur après arrêt avec perte du réseau

En fonctionnement normal, la plus grande partie de la puissance d'un réacteur nucléaire provient de la fission nucléaire du combustible<ref>Modèle:Lien web.</ref>. Cependant, une part non négligeable de cette puissance provient de la puissance résiduelle dégagée par la radioactivité due à l'accumulation des produits de fission. Cette puissance résiduelle continue de générer de la chaleur après l'arrêt du réacteur nucléaire et nécessite un refroidissement pour empêcher la fusion du cœur du réacteur<ref>Modèle:Article.</ref>. Les réacteurs RBMK-1000, tels que ceux présents à Tchernobyl, utilisent de l'eau pour le refroidissement. Le Modèle:Nobr de Tchernobyl compte entre Modèle:Unité individuels, qui nécessitent chacun un débit de refroidissement de Modèle:Nobr d'eau par heureModèle:Sfn.

Les pompes de refroidissement sont alimentées par de l'électricité et doivent fonctionner pendant un certain temps après l'arrêt d'un réacteur, même en cas de défaillance de l'alimentation électrique externe. Chacun des réacteurs de Tchernobyl dispose donc de trois générateurs diesel de secours pour pallier cette éventuelle défaillance. Ces générateurs peuvent être activés en Modèle:Nobr, mais il leur faut Modèle:Unité pour atteindre leur pleine puissance et générer les Modèle:Unité nécessaires au fonctionnement d'une des pompesModèle:Sfn. Ce retard de Modèle:Nobrs représente un risque de sûreté lors d'une perte d'alimentation électrique externe et n'est pas acceptable pour un certain nombre d'accidents de référence pris en compte à la conception du réacteurModèle:Sfn,Modèle:Sfn.

Les concepteurs proposent d'utiliser l'énergie cinétique résiduelle des turbo-alternateurs afin de générer l'énergie électrique nécessaire pour alimenter les pompes de refroidissement avant la reprise par les générateurs de secoursModèle:Sfn, cette solution suffit pour faire fonctionner ces pompes pendant environ Modèle:NobrModèle:Sfn, mais elle ne comble pas complètement le délai entre une perte d'alimentation externe et le temps nécessaire pour que les générateurs de secours atteignent leur pleine puissanceModèle:Sfn. Des ingénieurs d'un institut de recherche situé à Donetsk proposent alors d'utiliser aussi la pression résiduelle de la vapeur produite par le réacteur juste après l'arrêt pour prolonger la rotation du groupe turbo-alternateur et couvrir ainsi le deuxième « trou » de Modèle:Nobrs. Un nouvel essai est programmé pour définir si cette solution fonctionne alors réellementModèle:Sfn.

Tests de sûreté

L'essai d'alimentation des pompes de refroidissement du réacteur sur la décélération du groupe turboalternateur après un arrêt fait partie des tests requis avant la mise en exploitation du réacteur, mais il n'avait pas pu être mené à bienModèle:Sfn. C'est lors de cet essai, réalisé plus de deux ans après la mise en service commercial de la centrale, que la catastrophe a lieuModèle:Sfn.

Un premier essai est effectué en 1982 sur le Modèle:Nobr et montre que la puissance générée par le groupe turbo-alternateur ne peut pas être maintenue suffisamment longtemps à cause d'un problème de régulation de l'excitation de l'alternateur. Ce point est modifié et l'essai est répété en 1984, mais il échoue de nouveau. En 1985, un troisième test a lieu, avec des résultats également négatifs. Un quatrième essai est ensuite programmé pour Modèle:Date-, à l'occasion d'un arrêt pour maintenance du Modèle:NobrModèle:Sfn,Modèle:Sfn.

Une procédure d'essai est rédigée, mais ses auteurs ne connaissent pas le comportement du réacteur RBMK-1000 dans les conditions de fonctionnement prévues pour la réalisation de l'essaiModèle:Sfn. Alors que ce quatrième essai nécessite la désactivation de certains systèmes de sécurité, comme celui de refroidissement de secours du cœur du réacteurModèle:Sfn, il est considéré comme un essai purement électrique des turbo-alternateurs, n'impliquant pas la partie nucléaire. Selon la réglementation en vigueur à l'époque, un tel test ne nécessite pas l'approbation de l'autorité principale de conception du réacteur (NIKIET) ni de l'organisme soviétique de réglementation de la sécurité nucléaireModèle:Sfn.

Déroulement de l'accident

Retards dans la réalisation du test et changements d'équipe

Superposition de plusieurs réacteurs nucléaires. Le réacteur RBMK est le deuxième plus large avec Modèle:Nobr et le troisième le plus grand avec Modèle:Nombre de hauteur.
Comparaison des tailles de cuve pour les réacteurs de génération Modèle:II, une classification de conception des réacteurs commerciaux construits jusqu'à la fin des années 1990.

Le test du Modèle:Date- doit être effectué par l'équipe de jour lors d'un arrêt prévu pour la maintenance du Modèle:NobrModèle:Sfn. Une équipe spéciale d'ingénieurs électriciens doit être présente pour effectuer un test sur le nouveau système de régulation de la tension une fois que les conditions correctes sont atteintesModèle:Sfn. En préparation pour le test, la réduction progressive de la puissance de la centrale commence le Modèle:Date- à Modèle:Heure, et la puissance du réacteur atteint Modèle:Unité à Modèle:HeureModèle:Sfn.

L'équipe de jour commence son service à Modèle:Heure, alors qu'il ne reste que 15 des Modèle:Nobr hors du cœur du réacteurModèle:Sfn. Selon les recommandations du constructeur, le réacteur aurait alors dû être arrêté car le nombre de barres non insérées dans son cœur était inférieur au nombre requis, mais l'essai se poursuit en suivant la procédure de test qui ne demande pas l'arrêt du réacteur. Selon Igor Kazachkov, le chef de l'équipe de jour : Modèle:CitationModèle:Refn. En conséquence, Kazachkov estime qu'il Modèle:CitationModèle:Refn,Modèle:Sfn.

Au lieu d'arrêter le réacteur, l'équipe de jour continue la préparation du test conformément à la procédure, et déconnecte le turbogénérateur Modèle:Numero du réseau à Modèle:Heure. Elle entreprend ensuite l'isolement du système de refroidissement de secours du cœurModèle:Sfn. Pour ce faire, elle doit fermer plusieurs vannes manuelles. Ce travail est réparti entre plusieurs équipes de deux ou trois hommes et prend environ Modèle:Nobr par vanne. Le système est entièrement désactivé à Modèle:HeureModèle:Sfn. Pendant ce temps, un des réacteurs de la centrale nucléaire d'Ukraine du Sud s'est intempestivement déconnecté du réseau ; les contrôleurs du réseau électrique de Kiev demandent donc à ce que la puissance actuelle de la tranche 4 soit maintenue jusqu'à ce que la demande d'énergie diminue en début de soirée. Le test, qui doit être effectué à Modèle:Unité, est ainsi retardéModèle:Sfn.

À Modèle:Heure, l'équipe de jour est remplacée par celle de début de soirée. Iouri Trehub, chef de cette équipe, n'a pas été familiarisé avec les procédures de l'essai puisque le test était censé être terminé avant sa prise de quartModèle:Sfn. Il s'étonne que le système de refroidissement de secours du cœur soit resté désactivé malgré les retardsModèle:Sfn, mais décide finalement qu'il serait trop compliqué de réactiver le système de refroidissement et de le désactiver à nouveau pour le testModèle:Sfn. Ceci n'a eu aucune incidence sur les événements qui se sont déroulés par la suite, mais le fait de laisser le réacteur fonctionner pendant près de Modèle:Nobr sans système de refroidissement de secours témoigne d'un bas niveau de culture de sûretéModèle:Sfn.

Aux alentours de Modèle:Heure, les contrôleurs du réseau électrique autorisent la reprise du test à partir de Modèle:Heure. Trehub a alors passé une partie de son temps de travail à étudier la procédure de test, mais il a reçu l'ordre d'attendre Anatoli Diatlov, l'ingénieur en chef adjoint de la centrale de Tchernobyl, avant de commencer l'essai. Ce dernier est cependant rentré chez lui à Modèle:Heure pour se reposer et reste introuvableModèle:Sfn. Lorsque Trehub appelle le domicile de Diatlov à Modèle:Heure, il apprend que celui-ci est déjà parti pour la centrale ; Diatlov, se déplaçant à pied, n'arrive sur place qu'à environ Modèle:HeureModèle:Sfn. Il refuse alors de répondre aux questions de Trehub et lui annonce que le test sera mené par l'équipe suivante. Ce dernier passe la dernière heure de son service à baisser la puissance du réacteurModèle:Sfn.

À 00h00, le changement avec l'équipe de nuit est effectuée. Elle n'est pas informée de la procédure du test en cours<ref name=":11">Modèle:Lien web</ref>.

Selon le programme initial, l'équipe de nuit n'aurait eu qu'à refroidir le cœur du réacteur et n'a ainsi pas été formée pour le test. Elle dispose de peu de temps pour préparer et exécuter l'expérience. Sous les ordres de Diatlov, qui supervise le test et dirige l'expérience, se trouvent Aleksandr Akimov, chef de l'équipe de nuit, et Leonid Toptounov, l'opérateur chargé entre autres du déplacement des barres de contrôle du réacteur.

Baisse inattendue de la puissance du réacteur

Fichier:RBMK fr.svg
Diagramme montrant le fonctionnement du réacteur.

Le test nécessite une réduction progressive de la puissance de sortie du Modèle:Nobr entre Modèle:UnitéModèle:Sfn.

À Modèle:Heure, l'équipe de nuit entreprend la réduction de la puissance du réacteur n°4<ref name=":11" />.

À Modèle:Heure la puissance atteint Modèle:Unité est atteinte. A partir de 700 MWth, le réacteur entre alors dans une zone d'instabilité<ref name=":11" />. En raison de la production d'un sous-produit de fission dans le réacteur, le xénon-135, qui est un absorbeur de neutrons inhibant la réaction en chaîne, la puissance du cœur continue à diminuer en l'absence de toute autre action de l'opérateur. Ce phénomène est connu sous le nom d'« empoisonnement du réacteur »<ref name="nf">Modèle:Lien web</ref>.

À Modèle:Heure, alors que la puissance est amenée à environ Modèle:Unité et que l'équipe essaie de maintenir le niveau de puissance, la manœuvre échoue<ref name=":11" />. Toptounov passe par erreur d'un régulateur de barres de contrôle fonctionnel à un régulateur hors service. Cette manipulation fait entrer le réacteur dans un état de quasi-arrêt, avec une puissance de sortie de Modèle:Unité ou moins<ref name=":11" />. La génération d'électricité s'élève alors à Modèle:Unité, ce qui est insuffisant pour faire fonctionner les pompes de refroidissement.

À ce stade, il convenait d’arrêter le réacteur pour 24 heures, le temps de laisser disparaître le xénon-135, produit de fission qui empêche le redémarrage. Le test était sans enjeu autre que technique. Il aurait dû donc être abandonné<ref name=":11" />.

Au lieu de cela, Toptounov déconnecte la plupart des barres de contrôle du système de régulation automatique et commence à les retirer manuellement afin de faire remonter la puissance du réacteur. Il est entre autres aidé par Trehub, qui est resté comme observateur et finit par prendre la place de Toptounov. En quatre minutes, il parvient à faire remonter la puissance du réacteur à Modèle:Unité. Dès que la puissance atteint Modèle:Unité, le système de régulation automatique est réactivé et la puissance se stabilise<ref name=":6" />.

Entre Modèle:Heure et Modèle:Heure, les signaux d'alarme d'urgence concernant les paramètres thermo hydrauliques sont ignorés, apparemment pour préserver la faible puissance du réacteur. La raison de ce mépris pour les alarmes de sécurité n'est pas connue. Il est supposé qu'Anatoly Diatlov, l'ingénieur en chef adjoint de la centrale, a fait pression sur ses employés pour qu'ils procèdent au test malgré les problèmes apparents, menaçant même de licencier ceux qui exprimeraient une quelconque objection<ref name="atom">Modèle:Article.</ref>

À 01h00 du matin, la puissance est remontée à 200 MW thermiques mais il n’y a presque plus d’absorbants dans le cœur. La situation du réacteur n’est donc plus en conformité ni avec les conditions du test ni avec les règles de sûreté d'exploitation<ref name=":11" />.

À Modèle:Heure et Modèle:Heure, comme prévu dans la documentation du test, deux pompes de réserve sont activées, afin d'augmenter le débit d'eau qui passe par le réacteur. Au total, huit pompes desservent alors le réacteur. L'augmentation du débit d'eau déstabilise cependant le réacteur et fait baisser le taux de vapeur dans les séparateurs de vapeur du réacteurModèle:Sfn.

À Modèle:Heure, les opérateurs désactivent, pour continuer l’essai, des systèmes d’arrêt d’urgence et de refroidissement<ref name=":11" />.

À Modèle:Heure, le débit de vapeur dépasse la limite minimale autorisée, déclenchant une alarme de faible pression de vapeur dans les séparateurs de vapeur. Bien que le débit d'eau supplémentaire permette de réduire la température globale du cœur, l'eau est un faible absorbeur de neutrons, mais sa densité en fait un meilleur absorbeur que la vapeur. L'activation des pompes supplémentaires a donc diminué la puissance du réacteur. L'équipe réagit en arrêtant les deux pompes de réserve dans le but d'augmenter la pression de la vapeur, et en retirant manuellement d'autres barres de contrôle pour maintenir l'alimentation électrique<ref name="OECD02-Ch1">Modèle:Lien web.</ref>,<ref>Modèle:Lien web.</ref>,Modèle:Sfn. Il ne reste bientôt plus que 9 des Modèle:Nobr de contrôle dans le cœur du réacteur, rendant le réacteur hautement instable<ref name=":6" />.

Explosion du réacteur

Fichier:Chernobyl rubble and steam tanks overlaid.gif
Vue de synthèse en 3D : avant et après l’accident.

À 01h23 min 04 s, l'essai proprement dit débute. Les vannes d'alimentation en vapeur de la turbine sont fermées<ref name=":11" />, mais le réacteur n'est pas arrêté (les signaux d'arrêt d'urgence du réacteur sur arrêt des turbines ont été déconnectés afin de pouvoir refaire l'essai si besoin, cette déconnexion est hors procédure de testModèle:Sfn). L'alimentation des pompes de refroidissement du réacteur est alors fournie par l'inertie du turbo-alternateur en service, le débit d'eau passant dans les canaux du combustible décroît au fur et à mesure de la baisse de régime du turboalternateur, ce qui provoque l'ébullition de cette eauModèle:Sfn. À cause du coefficient de vide positif, le réacteur entre dans une rétroaction positive (amplificatrice du processus engagé) ou excursion nucléaire<ref name=":10" />, entraînant une rapide montée de sa puissanceModèle:Sfn.

À 01h23 min 25 s, la pression de vapeur dans le cœur devient incontrôlable, provoquant une série de rupture et de déformation de nombreux canaux de force<ref name=":11" />.

À Modèle:Heure, devant l'emballement du réacteur, le chef de quart de nuitModèle:Sfn, Aleksandr Akimov appuie sur le bouton d'arrêt d'urgence. Les barres de contrôle commencent alors à descendreModèle:Sfn. Or, par un défaut de conception, sur ce type de réacteur nucléaire, l’insertion complète des barres d’arrêt d'urgence dans le cœur du réacteur prend près de Modèle:Nobr<ref>Modèle:Article.</ref>,<ref>Modèle:Lien brisé.</ref>, là où les systèmes d'arrêt d'urgence occidentaux se déploient en moins de 2 secondes pour stopper la réaction de fission<ref name=":7">Modèle:Lien web</ref>.

Voyant que les barres ne sont descendues que de Modèle:Unité au lieu des Modèle:Unité attendus, Akimov coupe l'alimentation de leur mécanisme de commande afin que les barres tombent par gravité. Mais le réacteur devenu trop chaud, et les canaux guidant les barres de commande sont déformés par les ruptures et bloquent la descente de celles-ciModèle:Sfn<ref name=":11" />.

En outre, par un second défaut de conception du système d'arrêt du réacteur RBMK, les extrémités de ces barres de contrôle en bore (matériau absorbant et ralentisseur de la fission) sont faites de graphite qui provoque au contraire, au début de leur insertion, une augmentation de la réactivité et donc de la puissance<ref name="IRSN-RBMK">Modèle:Lien web.</ref>,<ref name=":3">Modèle:Lien web.</ref>,<ref>Modèle:Ouvrage.</ref>,<ref name=":7" />.

À Modèle:Heure, la radiolyse de l'eau conduit à la formation d'un mélange détonant d'hydrogène et d'oxygène. Modèle:Citation<ref name="IRSN-RBMK" />,<ref name="Nesterenko">« Lettre du Professeur Nesterenko à Wladimir Tchertkoff, Solange Fernex et Bella Belbéoch », janvier 2005.</ref>. La pression à l'intérieur du coeur ne peut plus être contenue. Une explosion se produit<ref name=":11" />. Les Modèle:Unité de la dalle de béton recouvrant le réacteur sont projetées en l'air et retombent de biais sur le cœur du réacteur qui est fracturé par le choc. Un incendie très important se déclare avec une trentaine de foyers<ref>Modèle:Lien web</ref>, tandis qu'une lumière aux reflets bleus se dégage du trou formé (effet Vavilov-Tcherenkov).

La gestion de l'incendie et la sous évaluation de la gravité de la situation

Les techniciens présents sur place, notamment Anatoli Diatlov, l’ingénieur en chef adjoint, ne saisissent pas immédiatement l'ampleur de la catastrophe et pensent que le réacteur est toujours intact, de même que Viktor Brioukhanov, le directeur de la centrale réveillé à Modèle:Heure.

Entre temps, dans la salle des machines, au niveau 0, le feu prend en plusieurs endroits. Le revêtement craque, des morceaux incandescents de combustible et de graphite, qui s'enflamme à l'air libre, tombent par terre et sur le matériel tandis que l'eau radioactive surgit vers le puisard du condensat. Une odeur d'ozone se répand dans les installations en feu<ref name=":6" />.

Anatoli Diatlov qui émet l'hypothèse erronée avec Akimov d'une explosion du réservoir central d'hydrogène, demandent aux ingénieurs nucléaires stagiaires présents et en formation, Proskouriakov et Koudriavtsev d'aller dans le hall central insérer manuellement les barres de contrôle dans le cœur du réacteur<ref name=":6" />. Ces derniers arrivés dans le hall central constatent la destruction du réacteur et sont mortellement irradiés. De retour au centre de commandes, la peau foncée due au hâle nucléaire y compris sous leurs vêtements, leurs constatations sont refusées par Anatoli Diatlov qui les traite d'incompétents<ref name=":6" />.

À Modèle:Heure du matin, Anatoli Diatlov, après avoir ordonné l'alimentation en eau du réacteur, entreprend avec le dosimétriste de la centrale Gorbatchenko une exploration des installations. Le radiamètre prévu pour détecter des doses de 1000 micro roentgens/ (soit ,6 roentgens/hh) est dépassé comme le constate ce dernier. Un radiamètre avec une échelle de mesure allant jusqu'à 10 000 roentgens, existait mais était enfermé dans un coffre, devenu inaccessible du fait de l'effondrement des structures de la centrale <ref name=":6">Modèle:Ouvrage</ref>. Ils constatent la présence de graphite qu'ils ne s'expliquent pas, le cœur devant être intact en principe<ref name=":6" />.

L'équipe technique présente tente le maximum pour circonscrire l'incendie en bouchant les canalisations d'huile rompues qui risque de s'enflammer tandis que les pompiers de Pripiat alertés, interviennent sur les abords et le toit de la centrale pour arrêter les foyers<ref name=":6" />. Ils sont tous gravement irradiés pour leur majorité en raison de morceaux de graphite et de combustible directement éjecté depuis le cœur du réacteur.

À Modèle:Heure du matin, Viktor Petrovitch Brioukhanov, le directeur général de la centrale, arrive à la salle de commande n°4. Il procède à une analyse de la situation et sur la foi des déclarations d'Akimov estime que le réacteur est intact. L'activité de l'air atteint 3 à 5 roentgens / h dans la salle de commande n°4<ref name=":6" />.

À 03h00 du matin, Brioukhanov téléphone de son bureau au domicile de Vladimir Vassilievitch Maryine, responsable du secteur de l'énergie nucléaire au Comité central du Parti. Vorobiev, chef de l'état-major de la défense civile de la centrale détecte une activité de 250 roentgens /heure au moyen d'un détecteur plus précis mais s'aperçoit que l'aiguille de mesure dépasse le cadre autorisé. L'activité à l'intérieur de la centrale et notamment dans le hall du réacteur, désormais à l'air libre, est de 15 000 roentgens / heure<ref name=":6" />. Brioukhanov est informé par Vorobiev des mesures mais estime que le détecteur est défectueux, ce que conteste Vorobiev<ref name=":6" />.

À Modèle:Heure du matin, le directeur de la centrale, appelle d’ailleurs le ministère de l'Énergie en déclarant que « le cœur du réacteur n'est probablement pas endommagé »Modèle:Sfn. En parallèle, l'ingénieur en chef Fomine, resté introuvable pendant plusieurs heures, arrive à la salle de commande n°4. Il donne l'instruction de maintenir l'alimentation en eau du réacteur<ref name=":6" />.

Il reçoit l'ordre de Moscou, de maintenir le refroidissement par eau du réacteur ; cet ordre, que Viktor Brioukhanov fera appliquer toute la journée, n'aura pour effet que de libérer plus de radioéléments dans l'atmosphère, de noyer les installations souterraines communes aux Modèle:Nobr et d'épuiser les réserves en eau, menaçant gravement le fonctionnement et l'intégrité du Modèle:Nobr et également l'alimentation électrique des réacteurs 1 et 2<ref name=":6" />. En conséquence, l'ingénieur en chef responsable du Modèle:Nobr, Youri Edouardovitch Bagdassarov, qui a compris que les ressources en eau sont dévolues en priorité au Modèle:Nobr, mais impactent également celles nécessaires au réacteur n°3 prend au cours de la journée et contre les directives de l'ingénieur en chef (M.N. Fomine), la décision de faire passer le Modèle:Nobr en arrêt à froid, permettant ainsi d'éviter que son cœur ne fonde par manque d'eauModèle:Sfn. Au moment de l'accident, et voyant dans les heures suivantes que la situation radiologique s'aggravait, il a donné l'ordre à tous ses hommes de mettre les masques dit "pétale" et de prendre les comprimés d'iodure de potassium<ref name=":6" />.

En parallèle, les bâtiments des réacteurs 1 et 2 toujours en fonctionnement, sont contaminés par le système d'aération de la centrale qui prélève l'air directement à l'extérieur et saturé de radionucléides en provenance du reacteur n°4<ref name=":8" />.

Les opérateurs Akimov et Toptounov, sur la base erronée que le réacteur est intact tentent de maintenir l'alimentation en eau s'irradiant gravement dans les installations parsemées de blocs de graphite<ref name=":6" />.

Au sein du bunker du bâtiment administratif du réacteur n°1, le directeur Brioukhanov assure la liaison avec Moscou et l'ingénieur Fomine avec la salle de commande de la tranche n° 4. Moscou annonce la création d'une commission d'enquête composée de spécialistes qui doit partir à Modèle:Heure.

À 05h00 du matin, Anatoli Diatlov et le dosémétriste Gorbatchenko sont pris de graves vomissements et sont évacués au centre médical<ref name=":6" />.

Fomine demande au physicien Anatoli Sitnikov de faire une observation la plus objective de la situation. Celui-ci après avoir exploré le hall des machines détruit, monte sur les hauteurs du toit de la centrale du coté de la tour B (chimie spéciale) et constate l'ampleur des destructions<ref name=":6" />.

À 10h00, Anatoli Sitnikov rapporte à Fomine et Brioukhanov que la tranche n°4 et donc le cœur du réacteur son détruits, ce qui n'est pas pris en compte<ref name=":6" />. Gravement irradié, il reçut une dose de plus de 1 500 roentgens, il décèdera dans les semaines suivantes.

Versions alternatives

Plus de cent versions alternatives de l'accident ont été proposées par des sources diverses. Aucune n'a jamais été reprise dans un rapport national ou international, ni dans une revue publiée sous évaluation par les pairs.

Hypothèse sismique

Cette hypothèse attribue la cause de l'accident à un tremblement de terre qui aurait eu lieu quelques secondes avant dans la zone de Tchernobyl<ref>Modèle:Article.</ref>,<ref>Modèle:Lien web.</ref>,<ref>Modèle:Lien web.</ref>. Des enregistrements sismiques effectués par trois stations militaires auraient mis en évidence un séisme de Modèle:Nobr sur l'échelle de Richter à Modèle:Heure (moment du pic des courbes), tandis que, selon plusieurs rapports, l'explosion aurait eu lieu entre Modèle:Heure et Modèle:Heure. Cet enchaînement des événements est contesté et la secousse enregistrée pourrait simplement correspondre à l'onde de choc provoquée par l'explosion du bloc no 4. Plusieurs scientifiques qui se sont penchés sur l'hypothèse du tremblement de terre ont ainsi refait les calculs de temps en prenant en compte différentes incertitudes et ont montré qu'il était possible de faire coïncider le moment de l'explosion avec celui de la secousse, ce qui les a cependant amenés à modifier la chronologie « officielle » des événements telle qu'elle a été décrite dans la section précédente<ref>{{#invoke:Langue|indicationDeLangue}}Modèle:Pdf The Causes and Scenario of the Chernobyl Accident, and Radioactive Release on the CHNPP Unit-4 Site, Boris Gorbatchev, du centre interdisciplinaire «Sarcophage» (Modèle:Lang-ru, Oukrytié) de l'Académie nationale des sciences d'Ukraine ({{#invoke:Langue|indicationDeLangue}} article en version originale).</ref>,<ref>{{#invoke:Langue|indicationDeLangue}}Modèle:Pdf Analysis of the Version “Earthquake is the Cause of the Chernobyl Accident”, Nikolaï Karpane, ingénieur en chef adjoint de la centrale en 1986 ({{#invoke:Langue|indicationDeLangue}} article en version originale).</ref>.

Hypothèse politique

Modèle:Article connexe Le documentaire Le Pic-vert russe, réalisé en 2015 par Chad Gracia, développe l'hypothèse selon laquelle la catastrophe nucléaire de Tchernobyl aurait été commanditée par le ministre russe des Communications Vassily Chamchine. L'objectif aurait été de cacher aux yeux du pouvoir soviétique le fait que l'antenne radar trans-horizon Modèle:Nobr, située à Modèle:Unité de la centrale nucléaire, ne fonctionnait pas. En provoquant cette explosion, il masquait l'échec technologique du système Duga, faisant passer la catastrophe nucléaire pour la cause de cet échec, et il échappait à une accusation de « détournement de fonds publics » qui était à l'époque punie de la peine de mort<ref>Modèle:Lien web.</ref>,<ref>Modèle:Article.</ref>

Après l'accident

Lutte contre l'incendie (Modèle:Date-)

Durant cette nuit, Modèle:CitationModèle:Sfn. Cette intervention évitera la propagation du feu aux autres tranchesModèle:Sfn. Sinon, Modèle:CitationModèle:Sfn.

Afin d'éteindre l'incendie, Viktor Brioukhanov appelle simplement les pompiers. Ceux-ci, venus de Prypiat, située à Modèle:Unité de la centrale, interviennent sur les lieux sans équipement particulier. Cependant, les matières nucléaires ne peuvent être éteintes avec de l'eau en raison des dégagements de vapeur et d'éléments radioactifs qu'elle engendre.

A Modèle:Heure, le principal foyer d'incendie est cependant maitrisé<ref name=":12">Modèle:Lien web</ref>. La maîtrise de tous les foyers d'incendie nécessite une semaine<ref name=":12" />.

Au total, 600 pompiers participèrent à cette extinction. Ils furent exposés non seulement à une chaleur intense mais à une très intense radioactivité. Les pompiers intervenus dans les premières heures et gravement irradiés, sont évacués notamment vers l'hopital n°6 de Moscou et mourront pour la plupart<ref name=":6" />.

Au total, 134 souffrirent d’un syndrome aigu d’irradiation entrainant 40 décès, auxquels il faut ajouter 19 décès causés par des brûlures radio-induites<ref name=":12" />. Les témoignages sur leur souffrance et les conditions de leur mort ont été recueillis par la journaliste biélorusse Svetlana Alexievitch, prix Nobel de littérature, et publiés dans son livre La Supplication.

Le principal danger de l'incendie est que les dégâts qu'il occasionne à la structure risquent de provoquer l'effondrement de la matière en fusion (corium) dans les parties souterraines qui sont noyées. Un contact entre l'eau et le corium pourrait provoquer une explosion de vapeur engendrant des dommages supplémentaires probablement limités au site<ref name=":5">Modèle:Lien web</ref>.

Ainsi, au cours des jours suivants, des plongeurs sont envoyés afin de fermer les vannes et installer un système de pompage pour vider les salles noyées. L'incendie finira par être éteint par projection dans le brasier de sacs de sable et de bore depuis des hélicoptères<ref name=":5" />,<ref>Tchernobyl : comment l’Europe a failli être rasée par une deuxième explosion, sciences et avenir, 8 avril 2019</ref>.

Les photos des pompiers de Tchernobyl sont exposées au musée de Tchernobyl de Kiev. On y découvre des héros de l'Union soviétique tels que Vladimir Pravik, Victor Kibenok, Vassili Ignatenko, Mykola Titenok, Mykola Vachtchouk et Tichtchoura<ref>Modèle:Lien web.</ref>.

Le 26 avril 1986, la Commission gouvernementale créée suite à l'information de l'accident et dirigée par Boris Evdokimovitch Chtcherbina, vice ministre en charge de l'énergie en URSS arrive à Prypiat à 20h00<ref name=":8" />. Un survol de la tranche accidentée est effectuée et la constation de la destruction du réacteur n°4 et de la continuation de la réaction nucléaire dans le cœur éventré et à ciel ouvert desormais est attestée<ref name=":8" />,<ref name=":6" />.

L'armée qui a en URSS la responsabilité de la gestion de crise en cas de catastrophe civile majeure<ref name=":6" />, est appelée en renfort avec le régiment de guerre chimique dirigé par le général Pikalov<ref name=":8" />.

Étouffement du cœur du réacteur en fusion (Modèle:Date-Modèle:Date-)

L'incendie éteint, les techniciens de la centrale prennent conscience de l'étendue des dégâts provoqués par la retombée du toit sur le réacteur, qui est désormais fissuré. Le graphite toujours en combustion, mélangé au magma de combustible qui continue de réagir, dégage un nuage de fumée saturé de particules radioactives. Sa vitesse de combustion est de 1 tonne/heure. La commission dont fait partie le physicien Valeri Legassov, détermine que les 2 500 tonnes que contenait initialement le cœur vont alors brûler pendant plus de 240 heures continuant à libérer des matières radioactives<ref name=":8" />.

Il faut donc au plus vite maîtriser le feu de graphite et faire face à la présence de débris hautement radioactifs projetés aux environs par l'explosion. Ce n'est qu'ensuite que le réacteur pourra être isolé par un sarcophage.

Largages par hélicoptères

La première opération, menée par plus de mille pilotes, est réalisée sous la direction de l'armée grâce à un ballet d'hélicoptères militaires de transport Modèle:Lnobr<ref>Modèle:Lien web.</ref>. Il s'agit de larguer dans le trou béant Modèle:Unité de sable, d'argile, de plomb, de bore, de borax et de dolomite<ref>Modèle:Lien web.</ref>, un mélange qui permettra de stopper la réaction nucléaire et d'étouffer l'incendie du graphite afin de limiter les rejets radioactifsModèle:Sfn. La mission est difficile, car elle consiste à larguer les sacs à une hauteur de plus de Modèle:Unité dans un trou de Modèle:Unité de diamètre environ, et ceci le plus vite possible, car malgré l'altitude les opérateurs reçoivent Modèle:Nobr, soit Modèle:Unité, en huit secondes, avec un débit dose de plus de Modèle:Unité. Une telle dose augmente significativement la probabilité de développer un cancer.

Le Modèle:Date, des unités d'hélicoptères dirigées par le général Antochkine appelées en renfort arrivent à partir de 4h00 du matin sur la place de l'hôtel de Prypiat<ref name=":8" />.

Après avoir évalué la situation, les hélicoptères sortent 110 fois et 150 tonnes de matériaux dont du sable sont larguées dans le coeur du réacteur par les équipages qui, à une centaine de mètres de hauteur reçoivent un flux de 500 roengens /h<ref name=":6" />.

Le Modèle:Date, 300 sorties sont effectuées et 300 tonnes de matériaux sont déversées<ref name=":6" />.

Le Modèle:Date, 750 tonnes sont déversées dans le coeur du réacteur<ref name=":6" />.

Dans la seule journée du Modèle:Date-, Modèle:Nobr de sable et d'argile sont ainsi déversées sur le réacteur<ref name=":6" />.

Le Modèle:1er mai, 1 900 tonnes sont larguées dans le cœur réacteur<ref name=":6" />.

Au total, du 26 avril au 2 mai 1986, 5 000 tonnes de matériaux sont déversées dans le coeur du réacteur pour étouffer la réaction<ref name=":6" />. Les pilotes et membres d'équipage sont fortement irradiés. Par la suite, les pilotes mettront des masques de respiration et des feuilles de plomb sous leur siège pour réduire partiellement l'exposition au rayonnement. Néanmoins, au cours de leur l'hospitalisation qui durera un mois, on extraira au moyen de transfusions sanguines répétées des sels d'uranium et de plutonium du sang des pilotes<ref name=":6" />.

Le soir du Modèle:Date, à 19 heures, la réduction de moitié du nombre de sacs largués est ordonnée par Chtcherbina par crainte que les constructions en béton, sur lesquelles reposait le réacteur, ne supportent pas le poids et ne s'effondrent dans la piscine de condensation, ce qui aurait provoqué une explosion thermique et un énorme rejet de radioactivité<ref name=":6" />.

Vidage de la nappe des sous-structures

La seconde opération a pour objectif de vider le bâtiment de la centrale de l'eau présentes dans la piscine et accumulée par l'action des lances incendies des pompiers sous les structures du réacteur pour contrer le risque d'explosion thermique menaçant les réacteurs 1,2 et 3 encore intacts<ref name=":9" />,<ref name=":6" />.

En effet, le réacteur est toujours actif et la dalle de béton qui le soutient menace de se fissurer. Plus grave, l'eau déversée par les pompiers pour éteindre l'incendie<ref name=":0" /> a noyé les sous-structures, menaçant ainsi l'intégrité et le pilotage des trois autres réacteurs de la centrale. Le professeur Vassili Nesterenko diagnostique que, si le cœur en fusion atteint la nappe d'eau accumulée par l'intervention des pompiers, une explosion de vapeur est susceptible de se produire et de disséminer des éléments radioactifs à une très grande distance<ref name=":0" />. En effet, la fusion du combustible et des structures métalliques a formé un corium sur le plancher situé sous le réacteur. L'eau pouvait être drainée en ouvrant des vannes d'évacuation. Cependant, les soupapes qui la contrôlaient étaient sous l'eau, situées dans un couloir inondé du sous-sol.

Ainsi, des volontaires en combinaison de plongée, avec des respirateurs (pour la protection contre les aérosols radioactifs) et équipés de dosimètres, plongent dans l'eau radioactive pour ouvrir les vannes<ref name="kramer">Modèle:Lien web.</ref>,<ref name="mkru">Modèle:Lien web.</ref>. Ces hommes sont les ingénieurs Alexei Ananenko et Valeri Bezpalov (qui savaient où se trouvaient les vannes), accompagnés du superviseur de quart Boris Baranov<ref name="Chernobyl 1986, p.178">Modèle:Ouvrage.</ref>. Selon de nombreuses sources, les trois hommes savaient que c'était une mission suicide, ils auraient subi une forte irradiation et seraient morts peu de temps après. C'est par exemple le cas dans le docufiction de la BBC Modèle:Langue. Certaines sources ont affirmé à tort qu'ils étaient morts dans l'usine<ref>Modèle:Article.</ref>. Cependant, les recherches d'Andrew Leatherbarrow, auteur du livre Tchernobyl 01:23:40, ont déterminé que l'histoire fréquemment racontée était une exagération grossière : Alexei Ananenko continue de travailler dans l'industrie de l'énergie nucléaire et pense qu'il y a beaucoup de Modèle:Citation autour de Tchernobyl dans les médias<ref>Modèle:Lien web.</ref>. Bien que Valeri Bezpalov ait été retrouvé encore en vie par Leatherbarrow, Baranov âgé de Modèle:Nobr, a vécu jusqu'en 2005 et est mort d'une insuffisance cardiaque, selon une source en langue russe<ref>Modèle:Lien web (autotranslation).</ref>. En 2019, Ananenko est toujours vivant, et déclare que les doses de radiations qu'il a reçues à ce moment n'étaient pas particulièrement élevées<ref>Modèle:Lien web.</ref>

Nettoyage des bâtiments de la centrale

D'autre part, en parallèle, sur le toit et aux alentours immédiats de la centrale, une cinquantaine d'opérateurs sont chargés dans les premiers jours suivant la catastrophe de collecter les débris très radioactifs. Chaque opérateur ne dispose que de Modèle:Nobr pour effectuer sa tâche. Il est exposé à cette occasion à des niveaux de radiations extrêmement élevés dont ne le protègent guère des équipements de protection dérisoires faits de 20 kg de plombs, principalement destinés à l’empêcher d’inhaler des poussières radioactives. Un grand nombre de ces travailleurs en première ligne ont développé par la suite des cancers et sont morts dans les années qui ont suivi. Ces travailleurs ont été surnommés les liquidateurs. Il a aussi été fait appel à des robots télécommandés français, suisses et allemands, mais ceux-ci sont tous tombés en panne à cause des niveaux de radiation exceptionnellement élevés<ref>Modèle:Article.</ref>,Modèle:Sfn.

Renforcement de la dalle de béton du réacteur

Sous le cœur du réacteur en fusion, la dalle de béton menace de fondre. Au cours de la seconde quinzaine de mai, environ Modèle:Nobr des mines des environs de Moscou et du bassin houiller du Donbass sont appelés pour creuser un tunnel de Modèle:Nobr de long menant sous le réacteurModèle:Sfn afin d'y construire une salle. Un serpentin de refroidissement à l'azote doit y être installé pour refroidir la dalle de béton du réacteurModèle:Sfn. Les mineurs se relaient Modèle:Nobr sur 24 dans des conditions très difficiles dues à des températures élevées (plus de Modèle:Tmp) et en étant dans l'impossibilité d'utiliser des ventilateurs à cause du niveau très important de poussières radioactives. Le débit de dose à la sortie du tunnel est d’environ Modèle:Nobr par heureModèle:Sfn. La radioactivité dans le tunnel lui-même est élevée, quoique non fatale à court terme, mais la chaleur rend le travail difficile<ref name="Nesterenko" />. Le circuit de refroidissement ne fut jamais installé, finalement remplacé par du béton pour ralentir et arrêter la descente du cœur fondu.

Chute de la radio-activité

Grâce à ces travaux, le niveau de radiation baisse momentanément avant de s'élever à nouveau. Ce n'est que le Modèle:Date que la radiation absorbée en huit secondes chute enfin à Modèle:Unité par heure. Après cette date, ce sont encore Modèle:Nobr de mélanges qui seront déversées.

Deux ans après la catastrophe, Valeri Legassov, scientifique (directeur de l'Institut Kourtchatov de physique nucléaire) et haut fonctionnaire soviétique chargé des questions nucléaires, et qui a co-écrit et présenté le rapport de la première commission gouvernementale chargée de la gestion de Tchernobyl, se pend après avoir dénoncé les défauts des centrales nucléaires russes, mal conçues à cause des difficultés financières de l'Union soviétique, et il publie à titre posthume un article dans la Pravda<ref>Modèle:Article.</ref>,<ref name=":8">Modèle:Lien web.</ref>.

Écoulement et solidification du cœur

Le Modèle:Date-, l'émission du réacteur chute en moins de vingt minutes au 1/Modèle:50e de sa valeur précédente, puis à quelques curies par jour. L'explication n'en sera connue qu'en 1988, à la suite de forages horizontaux faits à cette date, à travers le Modèle:Nobr, par l'Institut Kourtchatov : le fond du réacteur avait cédé d’un coup, et le cœur fondu s’était écoulé, puis solidifié Modèle:Unité dans les infrastructures inférieures, la piscine de suppression de pression qui avait été vidée<ref>Données métrologiques et évaluation des risques en France lors de l’accident de Tchernobyl (26 avril 1986). Mise au point historique, Pierre Galle, Raymond Paulin, Jean Coursaget, juin 2003, Éditions scientifiques et médicales Elsevier.</ref>. Le cœur du réacteur mélangé de débris fondus est appelé corium et sa partie visible, du fait de sa forme, est nommée pied d'éléphant<ref>Modèle:Lien web.</ref>,<ref>Modèle:Lien web</ref>. L'activité du cœur n'a cessé de décroître depuis les événementsModèle:Refnec. Depuis la pose de la seconde enceinte de confinement en 2016, les émissions de neutrons ont doublé, Ce regain d'activité est, selon certains spécialistes, susceptible d'entraîner un risque de destruction des infrastructures de confinement<ref>Modèle:Lien web</ref>, opinion démentie par l'IRSN<ref>Modèle:Lien web</ref>.

Construction du premier sarcophage et décontamination (14 mai – décembre 1986)

Modèle:Article connexe Dans les mois qui ont suivi, plusieurs centaines de milliers d'ouvriers (600 000 environ<ref>Modèle:Article.</ref>), les « liquidateurs » venus d'Ukraine, de Biélorussie, de Lettonie, de Lituanie et de Russie arrivent sur le site pour procéder à des nettoyages du terrain environnantModèle:Sfn. Leur protection individuelle contre les rayonnements était très faible, voire nulle. La décontamination était illusoire, dans la mesure où personne ne savait où transférer les gravats déblayés. Beaucoup de villages en Ukraine, mais surtout en Biélorussie ont été évacués, détruits et enterrés en raison d'une radioactivité trop élevée.

Dans la zone interdite, les liquidateurs étaient chargés de tuer les animaux domestiques et sauvages, car la poussière radioactive présente dans leur pelage risquait de contaminer les autres liquidateurs. D'autres unités de liquidateurs procédaient à la décontamination des villages et des camions revenant de la centrale à l'aide de simples jets d'eau, la poussière radioactive recouvrant presque tout.

En Modèle:Date- commençaient la décontamination de la centrale et l'isolation du réacteur. C'est dans ce périmètre que les niveaux de radioactivité étaient les plus élevés. Les véhicules étaient recouverts de plaques de plomb pour protéger leur équipage. Les liquidateurs travaillaient dans une radioactivité si élevée qu'ils ne pouvaient rester sur place que quelques minutes, voire secondes. De plus, des morceaux de graphite qui entouraient les barres de combustible du réacteur en avaient été expulsés lors de l'explosion et étaient éparpillés sur le toit de la centrale et dans ses environs. Ces gravats hautement radioactifs ne pouvaient être récupérés par des êtres humains sans sacrifier leur santé. Dans de telles conditions, des robots téléguidés ont été choisis pour procéder au nettoyage, mais la radioactivité était si élevée qu'ils tombaient en panne après quelques missions. La dernière solution était donc d'envoyer des hommes pour effectuer ce travail. Ces liquidateurs, par la suite appelés « bio-robots » ou Modèle:Citation, se relayaient à peu près toutes les Modèle:NobrModèle:Sfn sur les toits de l'usine, qui avaient reçu pour l'occasion des surnoms, « Nina », « Masha » et « Katya »<ref>Modèle:Lien web.</ref>, Masha étant la partie la plus radioactive des trois. Leur mission était de jeter les gravats radioactifs dans des bennes ou dans le réacteur détruit à l'aide de pelles ou, quand il n'y en avait plus, à la mainModèle:Sfn. Une fois cette lourde tâche effectuée, les travaux d'isolement du réacteur pouvaient commencer. On estime qu'il y avait sur le toit de Modèle:Unité/2 par heure, et donc que chaque liquidateur recevait environ Modèle:Nobr ; sachant que la dose mortelle est d'à peu près Modèle:Nobr en une année, ces hommes ont enduré différents problèmes de santé une fois rentrés chez eux<ref name=":0">La Bataille de Tchernobyl, film documentaire réalisé par Thomas Johnson, Modèle:Nobr, 2006.</ref>.

La solution retenue pour isoler le réacteur détruit est une imposante structure d'acier recouvrant les ruines du bâtiment. Du fait de la radioactivité, les liquidateurs chargés de sa construction ne pouvaient pas rester longtemps sur place. La construction de ce premier sarcophage de Tchernobyl s'est déroulée de mai à Modèle:Date-<ref>Film Vinci sur la construction du nouveau confinement, citation à 21 sec, consulté le 12 mai 2019.</ref>. Pour en célébrer la fin, un drapeau rouge a été hissé au-dessus de la tour de refroidissement. Les noms des liquidateurs sont mentionnés sur la dernière pièce métallique fixée au sarcophage. Une seule personne y repose : Valeri Kodemtchouk, un employé de la centrale mort à son poste dans la salle de pompage au moment de l'explosion et dont le corps n'a jamais été retrouvé<ref>Modèle:Lien web.</ref>.

Un hélicoptère Modèle:Lnobr s'est écrasé pendant l'édification du sarcophage, entraînant la mort de son équipage. Les pales ont percuté le câble d'une grue. La scène a été filmée par le cinéaste Vladimir Chevtchenko.

Selon Viatcheslav Grichine, membre de l'Union Tchernobyl, principale organisation des liquidateurs, sur Modèle:Nombre, « 25 000 sont morts et 70 000 restés handicapés en Russie, en Ukraine les chiffres sont proches, et en Biélorussie 10 000 sont morts et Modèle:Nombre »<ref>Modèle:Article.</ref>.

Modèle:Gallery

Évacuation tardive des populations

Fichier:View of Chernobyl taken from Pripyat zoomed.JPG
Vue de la centrale nucléaire depuis la ville de Prypiat, toute proche.
Fichier:Pripyat 1986.ogg
Message d’évacuation diffusé à Prypiat.

Modèle:Article connexe

Le Modèle:Date-, la population locale n’est pas prévenue de l'accident et poursuit ses activités habituelles sans prendre de précautions particulières, les autorités soviétiques considérant que la panique est bien plus dangereuse que la radioactivité<ref>Modèle:Ouvrage.</ref>. Les habitants de Prypiat, petite ville située à Modèle:Unité de Tchernobyl, ne sont pas immédiatement informés sur la gravité de la situation. Ils vivront une journée comme les autres, envoyant leurs enfants à l'école, les emmenant jouer au square. Ils ne seront évacués que Modèle:Nobr après l'accident<ref>Tchernobyl forever, documentaire d’Alain de Halleux (France, 2011, 55 min).</ref> après décision de la Commission gouvernementale intervenue le 26 avril à 23h00<ref name=":8" />. À Prypiat toujours, Modèle:Nobr âgés de Modèle:Unité participent à un « marathon de la paix » qui fait le tour de la centrale.

L'évacuation est officiellement annoncée le 27 avril 1986 à 11h00<ref name=":8" /> et débute le Modèle:Date à Modèle:Heure et les Modèle:Nombre<ref>Modèle:Lien web.</ref> de Prypiat sont les premiers concernés. Ils n'ont été informés que quelques heures auparavant par la radio locale, qui leur demandait de n'emporter que le strict minimum et leur promettait qu'ils seraient de retour sous Modèle:Unité. Emmenés par l'armée, ils sont hébergés dans des conditions précaires dans la région de Polesskoïe, elle-même gravement touchée par les retombées radioactives.

Au début du mois de mai, les Modèle:Nombre habitant dans un rayon de Modèle:Unité autour du site sont évacuées, opération qui se poursuit jusqu'à la fin du mois d'août. Chaque évacué reçoit une indemnité de Modèle:Unité par adulte<ref group="alpha">Cette somme correspond à un an de salaire moyen.</ref> et Modèle:Unité par enfant. Les évacuations touchent au total environ Modèle:Nombre de Biélorussie, de Russie et d’Ukraine. Slavoutytch, une ville comptant plus de Modèle:Nombre à la fin de l'année 1987, est créée ex nihilo.

Quatre « zones de contamination radioactive » décroissantes sont définies. Deux d'entre elles ne sont pas évacuées, mais les habitants disposent d'un suivi médical et de primes de risque.

Gestion administrative et politique

Autorités locales et échelons bureaucratiques

Dans les premières heures qui suivent la catastrophe, l'opacité créée par les différents échelons administratifs est totale. Mikhaïl Gorbatchev, secrétaire général du Comité central du Parti communiste de l'Union soviétique, n'est informé officiellement que le Modèle:Date-. Avec l'accord du Politburo, il est forcé de faire appel au KGB pour obtenir des informations fiables<ref>Documentaire France 3 / Play Film, témoignage de Gorbatchev.</ref>Modèle:Refinc. Le document qui lui est transmis parle d'une explosion, de la mort de deux hommes, de l'arrêt des tranches 1, 2 et 3. Les rapports faits au dirigeant soviétique sont entourés d'« un luxe de précautions oratoires »<ref>Modèle:Ouvrage.</ref>.

Rôle des pays occidentaux

Fichier:SPOT-1-1986-05-01-Tchernobyl-PAN.jpg
Image satellite prise le Modèle:Date- par le satellite français SPOT-1.

Le Modèle:Date- au matin, un niveau de radioactivité anormal est constaté dans la centrale nucléaire de Forsmark en Suède, qui entraîne l'évacuation immédiate de l'ensemble du site, par crainte d'une fuite radioactive interne. Mais les premières analyses montrent que l'origine de la contamination est extérieure à la centrale et vient de l'est. L'après-midi du même jour, l'Agence France-Presse rapporte l'incident<ref name="croix">Modèle:Lien web.</ref>.

À partir de ce moment, toutes les hypothèses sont formulées par les médias occidentaux. Les informations arrivent au compte-goutte (entretien à Kiev de personnes évacuées de la zone, etc.). L'agence de presse TASS parle le Modèle:Date- d'un accident « de gravité moyenne survenu à la centrale nucléaire de Tchernobyl », le Modèle:Citation, citant le Conseil des ministres de l'URSS. Alexandre Liachko, le premier ministre ukrainien, affirmera finalement que Modèle:Citation<ref name="croix" />. En même temps, les photos satellites du site de la centrale fournissent les premières images de la catastrophe.

Communication de crise

Pour Mikhaïl Gorbatchev, la catastrophe constitue la première mise en œuvre de la politique de glasnost (« transparence ») présentée au cours du {{#ifeq: | s | Modèle:Siècle | XXVIIe{{#if:|  }} }} congrès du PCUS (25 févrierModèle:Date-), et qui a rencontré de fortes oppositions. Dans son esprit, l'accident constitue « un nouvel argument fort en faveur de réformes profondes ».

Le Modèle:Date, Gorbatchev prononce une allocution télévisée de Modèle:Nobr dans laquelle il reconnaît l'ampleur de la catastrophe. Il rejette les accusations de dissimulation portées par les médias occidentaux et affirme que lui-même et la direction du parti n'avaient initialement pas conscience de son ampleur. La reconnaissance publique de la catastrophe et la mise en cause du système tranchent de façon importante avec la censure habituelle<ref>Modèle:Lien web.</ref>,<ref>Modèle:Ouvrage</ref>.

Il admet que des dysfonctionnements profonds ont eu pour conséquence que « ni les politiques ni même les scientifiques n'étaient préparés à saisir la portée de cet événement ». Cette volonté de transparence ne va pas sans une très importante propagande autour des travaux réalisés, destinée à mettre en valeur la « bataille contre l'atome ». Une banderole apposée sur le réacteur éventré proclame que « le peuple soviétique est plus fort que l'atome », tandis qu'un drapeau rouge est fixé au sommet de la tour d'aération de la centrale à l'issue des travaux de déblaiement.

Pendant Modèle:Nobr, seuls les Modèle:Nobr décès seront reconnus par les autorités<ref>La Bataille de Tchernobyl, partie 2 – Modèle:Nobr.</ref>.

Gestion des déchets

Une grande quantité de déchets radioactifs a été produite à la suite de l'accident. Une partie de ces déchets a été conservée sous le sarcophage ; une autre a été stockée en surface, ou enfouie dans de nombreux dépôts et tranchées (au nombre de Modèle:Nombre rien qu'en Ukraine, où le volume de déchets a été évalué à environ Modèle:Citation<ref name=IRSN_BD2000>Modèle:Lien web.</ref>.

Ces déchets ont été répartis selon leur niveau d'activité. Ceux de moyenne et de haute activité ont été stockés dans des casemates en béton ou des tranchées, ceux de faible activité (bois, matériaux, sols...) ont été enfouis sous des tumulus de terre. À l'heure actuelle, seules les tranchées accueillent encore ces déchets. Comme bon nombre de ces tranchées ne sont pas étanches, des radionucléides ont pu s'échapper vers les eaux souterraines. Pour y remédier, les autorités ont élaboré des aménagements tels qu'un système de drainage des eaux, des barrières, ou encore des puits de surveillance. En outre, des tranchées ont été construites afin d'accueillir de nouveaux déchets, notamment sur le site de Buriakovka en 2019. Il en est de même sur le site de Vektor qui doit accueillir des déchets de la centrale de Tchernobyl, mais également d'autres centrales ukrainiennes<ref name=IRSN>Modèle:Lien web.</ref>.

Avec l'aide de la France et de l'Allemagne, une base de données a été créée (de 1999 à mi-2000<ref name=IRSN_BD2000/>) pour décrire et localiser ces déchets et permettre leur suivi, pour les trois États principalement concernés<ref name=IRSN_BD2000/> à partir des informations qu'ils ont pu ou voulu fournir ; avant d'être complétée au fur et à mesure par des données nouvelles (via Modèle:Nobr<ref name=IRSN_BD2000/>, la base contenait (en 2000) l'équivalent de 45 % environ des dépôts estimés dans les zones contaminées<ref name=IRSN_BD2000/>). Des incohérences de données ont été détectées entre les versions russes et anglaises, et Modèle:Citation précisent les gestionnaires de la base<ref name=IRSN_BD2000/>.

La « Cassandre de Tchernobyl »

Modèle:Section à sourcer

Lioubov Kovalevskaïa est une journaliste russe qui a tenté d’alerter l’opinion publique sur le risque d’accident nucléaire six mois avant la catastrophe de Tchernobyl<ref name="Gouzée">Modèle:Article.</ref>. Elle a travaillé comme rédactrice en chef du journal La tribune de l’énergéticien de la centrale de Tchernobyl à partir de 1980. À partir de 1983, ayant observé « une fuite de vapeur radioactive [ayant] contaminé le site et atteint Prypiat » et enquêté à ce sujet, elle a cherché, à travers plusieurs articles censurés et édulcorés, à alerter les lecteurs sur le manque de sûreté nucléaire de la centrale. C’était un risque dont elle était témoin, et dont elle a été tragiquement victime, ayant été Modèle:Citation, ainsi que sa fille<ref name="Gouzée"/>. Dans ses articles, la censure ne l’a jamais laissée faire plus qu'une allusion aux dysfonctionnements qu’elle constatait.

Après quelques années, elle a démissionné de son poste. Dans la foulée, au début de 1986, elle a osé publier un article dans L’Ukrainien littéraire (de Kiev), affirmant plus clairement cette fois-ci que la centrale « n’était pas sûre ». L’administration communiste a alors ouvert une enquête visant à l’exclure du Parti, même si cette publication, improbable dans une revue littéraire, ne pouvait pas avoir d’impact important sur l’opinion publique de l’URSS.

Elle a ensuite écrit deux ouvrages : Tchernobyl secret et Le journal de Tchernobyl et donné une interview<ref>au journal Libération du mercredi Modèle:Date-, disponible en PDF sur le net.</ref>. Ainsi a posteriori a-t-elle été surnommée la « Cassandre de Tchernobyl » et Mikhaïl Gorbatchev l’a félicitée pour son « courage civique ».

Conséquences

En 2011, Mikhaïl Gorbatchev, secrétaire général du Comité central du Parti communiste de l'Union soviétique au moment de la catastrophe, affirmait : Modèle:Citation<ref>Modèle:Lien web.</ref>.

Fonctionnement de la centrale après l'accident

Les réacteurs 1, 2 et 3 sont maintenus en activité en raison des forts besoins d'électricité en Ukraine. Les conditions d'exploitation et la forte radioactivité obligent à une rotation des équipes afin de respecter les normes sanitaires.

Le 11 octobre 1991 un incendie détruit la salle des machines du réacteur n°2 et réduit le toit du bâtiment à l'état de débris. Le réacteur n°2 est alors mis définitivement hors service<ref name=":9">Modèle:Ouvrage</ref>.

Polémiques relatives aux conséquences

Internationalement, une crise de crédibilité affectant globalement l'énergie nucléaire est déclenchée par l'accident de Tchernobyl.

Selon Kate Brown, professeure au Massachusetts Institute of Technology (MIT), les conséquences réelles du désastre restent largement méconnues et sous-estimées : Modèle:Citation<ref>Modèle:Article.</ref>,<ref name=":1">Modèle:Ouvrage.</ref>.

Survol du territoire français par le nuage

En France, Pierre Pellerin, directeur du Service de protection contre la radioactivité, déclare qu'il n'y a pas de risques pour la santé publique en France des suites de Tchernobyl malgré l’augmentation de la radioactivité mesurée dans l'air. Cette déclaration est transformée en « le nuage s’est arrêté aux frontières » dans les médias<ref>Pierre Schmidt, Le nuage de Tchernobyl se serait arrêté aux frontières, Les dossiers du Net, 2 mai 2006.</ref>,<ref>En 2016, les retombées de Tchernobyl sont toujours présentes en France, Sciences et Avenir.</ref>.

La présentatrice du journal météo de Antenne 2, Brigitte Simonetta, annonce le Modèle:Date-, notamment en faisant figurer, de sa propre initiative, un panneau stop, que les prévisions météorologiques permettent de dire que le nuage ne devrait pas survoler la France grâce à la présence d'un anticyclone<ref name='SPS'>Modèle:Article.</ref>,<ref>Modèle:Lien web.</ref>.

Un communiqué du ministère de l'Agriculture daté du Modèle:Date-, mal rédigé car sa formulation est contradictoire, indique que Modèle:Citation<ref name='SPS' />.

Les balises de détections du Centre de Recherches Nucléaires de Strasbourg se sont déclenchéesModèle:Référence souhaitée.

Déplacements de populations

Modèle:Article détaillé

Fichier:Médaille Tchernobyl goutte de sang.jpg
Une des médailles remises aux liquidateurs : le symbole représente une goutte de sang traversée par les rayonnements alpha, bêta et gamma.
Fichier:Pripyat, Ukraine, abandoned city.jpg
Prypiat, devenue une ville fantôme.

Le rapport de 2007 de l'IRSN rapporte que, dans la semaine qui a suivi l’accident, les autorités soviétiques ont procédé à l’évacuation des habitants des localités des environs, soit plus de Modèle:Nombre, qui ont dû être relogées ultérieurementModèle:Sfn. Comme le note Philippe Coumarianos : « entre le Modèle:Date- et le 7 mai, deux villes et soixante-dix localités, situées dans un rayon de Modèle:Nobr autour de la centrale, furent vidées de leurs habitants. Cette zone d'exclusion couvre une superficie de près de Modèle:Unité, à cheval sur les territoires ukrainien et biélorusse. (…) Au total, environ Modèle:Nombre quittèrent leurs foyers »Modèle:Sfn.

Le déplacement des populations vivant dans les zones d’exclusion a également engendré un coût, et de nombreuses personnes vivent encore en territoire contaminé (en Biélorussie, le pays le plus touché, Modèle:Unité de personnes) et connaissent donc des difficultés. Il a également fallu créer de nouveaux établissements de santé et prendre des mesures sanitaires<ref name="IRSN - Sommaire">Modèle:Lien web.</ref>.

Passant outre les ordres d'évacuation de la zone d'exclusion nucléaire, environ un millier de samossioly (« colons individuels ») sont revenus y habiter, vivant en autarcie de leur lopin de terreModèle:Sfn ; en 2007, ils auraient été environ 300, dont la moitié à Tchernobyl.

Sanitaires

Fichier:Tchernobyl radiation 1996.svg
Carte indiquant l'état de la contamination au césium 137 en 1996 sur la Biélorussie, la Russie et l'Ukraine : Modèle:Légende
Modèle:Légende
Modèle:Légende
Modèle:Légende

Modèle:Article détaillé

Radiations

L'IRSN a publié en 2007 un rapport sur Modèle:Citation qui consacre cinq pages à une synthèse des conséquences de la catastrophe de Tchernobyl. Modèle:CitationModèle:Sfn.

L'IRSN rapporte que Modèle:CitationModèle:Sfn.

Les plus fortes doses de radiation ont été reçues par le millier de personnes qui sont intervenues sur le site les premiers jours, et ont été exposées à des doses allant de Modèle:Unité/2. Selon l'IAEA et l'IRSN, 134 présentèrent un syndrome d'irradiation aiguë et 28 décédèrent<ref name="IAEA" />,Modèle:Sfn. L'effet stochastique de la contamination radioactive sur les populations exposées moins fortement n'apparaît que statistiquement, et est plus difficile à mettre en évidence, d'où son caractère très polémique. La distribution dans les premières heures (6-30) de l'accident de tablettes d'iode à la population de Prypiat (la plus grande ville à proximité de la centrale, dont la population a été évacuée moins de Modèle:Nobr après l'accident) a permis en moyenne de diminuer la dose sur la thyroïde d'un facteur six<ref name="IAEA" />. Selon d'autres experts, allant du Comité scientifique des Nations Unies pour l'étude des effets des rayonnements ionisants à la Commission européenne en passant par le professeur Aurengo, la distribution d'iode a été trop partielle et/ou tardive<ref>Modèle:Ouvrage.</ref>,<ref name=RadiationProtection170 >Modèle:Ouvrage.</ref>,<ref>Modèle:Article.</ref>. Finalement, une très nette épidémie de Modèle:Nombre (au lieu des 50 statistiquement attendus) a été constatée chez les jeunes enfants de la région, directement attribuable à une contamination à l'Iode-131, et conduisant à neuf décès. Cela correspond à une multiplication du taux naturel de ce cancer, très rare chez l’enfant<ref>Modèle:Article.</ref>,<ref>Modèle:Article.</ref>, par un facteur entre 10 et 100Modèle:Sfn. Cet excès de cancers de la thyroïde parmi les enfants aurait été évité si toute la population avait bénéficié en temps voulu d’une distribution prophylactique d’iode stableModèle:Sfn.

Selon l'IAEA<ref name="IAEA" />, les quelque Modèle:Nombre qui étaient intervenus sur le site reçurent en moyenne une dose de l'ordre de Modèle:Unité (de Modèle:Unité/2) ; et le taux de mortalité de ce groupe semble avoir augmenté d'environ 5 %, conduisant à une estimation de quatre mille morts supplémentaires. Cependant, si la mortalité a été anormalement élevée, le risque de cancer à proprement parler semble avoir diminué dans ce groupe selon une étude pratiquée sur 8 600 de ces liquidateurs ayant reçu une moyenne de Modèle:Unité : elle montre une sous-incidence significative de 12 % de l’ensemble des cancers par rapport à la population générale russe, et elle n’a pas permis de mettre en évidence de relation dose-effet significative<ref name="Aurengo2004">Modèle:Pdf « La relation dose-effet et l’estimation des effets cancérogènes des faibles doses de rayonnements ionisants ». Maurice Tubiana et André Aurengo, Rapport à l'Académie nationale de médecine, octobre 2004. Modèle:P..</ref>. L’analyse chez ces liquidateurs a montré une augmentation (double, voire triple) de l’incidence des leucémies, mais sans relation dose-effet significative, ce qui pouvait signifier que cette augmentation apparente n'est qu'un biais de dépistage<ref name=Aurengo2004/>,<ref>Modèle:Article.</ref>,<ref>Modèle:Ouvrage.</ref>. L'IRSN indique que « indépendamment des incertitudes sur les doses reçues par les « liquidateurs », souvent surévaluées en raison des avantages sociaux et des compensations liées au statut de « liquidateur », les données issues du suivi de ces travailleurs sont d’interprétation difficile, notamment à cause de l’éclatement de l’URSS, qui a rendu nombre de « liquidateurs » à leurs pays d’origine »Modèle:Sfn. En reconstruisant les doses des sujets plutôt qu'en utilisant les chiffres officiels donnés par les registres, une étude de 2008 a cependant observé une augmentation significative du nombre de leucémies chez des liquidateurs ukrainiens, ce résultat étant conforté par l'existence d'une relation dose-effet linéaire<ref>Modèle:Article.</ref>,<ref name=RadiationProtection170/>.

L'IAEA estime qu'il n'y a pas d'effet statistiquement observable sur le taux de leucémie ou de cancer (autre que de la thyroïde) des populations les plus exposées, à savoir Modèle:Nombre évacuées des zones hautement contaminées (exposition moyenne estimée à Modèle:Unité, avec des expositions maximales de l'ordre de quelques centaines de mSv), Modèle:Nombre habitant les zones strictement contrôlées (exposition cumulée de l'ordre de Modèle:Unité entre 1986 et 2005), et les Modèle:Nobr d'habitants des zones faiblement contaminées (de 10 à Modèle:Unité)<ref name="IAEA" />. Ces zones contaminées (à plus de Modèle:Unité en Cs-137, soit un curie/km2) représentent un total de Modèle:Unité. Une contamination de 15 Ci par km2 occasionne une dose externe d’environ Modèle:Unité, auxquels il faut ajouter la part de contamination interne provenant des produits utilisés dans la chaîne alimentaire, doublant en moyenne cette valeur<ref>Modèle:Lien web.</ref>.

Pour l'OMS, la principale cause des décès dus à la catastrophe de Tchernobyl est le stress, pas les radiations<ref>Modèle:Lien web.</ref>. Cependant, il faut rappeler que l'OMS, organisation de l'ONU, est liée depuis 1959 par ses statuts à l’Agence internationale de l’énergie atomique (AIEA), chargée de promouvoir les usages pacifiques du nucléaire, qui lui interdit d’« entreprendre un programme ou une activité » dans le domaine nucléaire sans consulter cette dernière « en vue de régler la question d’un commun accord » (point 2 de l’article 1) »<ref>Le Monde Diplomatique: [1].</ref>.

Les personnes évacuées ont ainsi été confrontées à des facteurs de stress aigu, d’où peuvent découler le stress psychologique à long terme, le syndrome de stress post-traumatique et une diminution du bien-être<ref>Modèle:Lien web.</ref>.

Kate Brown indique : Modèle:Citation<ref name=":1" />.

Fichier:ChernobylMIR.jpg
Photo satellite de la région de Tchernobyl en 1997.

En dehors de ces zones, dans le reste de l'Europe, le passage des « nuages radioactifs » multiples<ref>Modèle:Article.</ref> a conduit à une hausse détectable de la radioactivité<ref>Modèle:Article.</ref>, mais la population a été exposée à moins de Modèle:Unité (c'est-à-dire deux à quatre fois la dose moyenne annuelle reçue par la radioactivité naturelle). En France, la radioactivité maximale enregistrée a été de l'ordre de Modèle:Unité, cinq à six fois plus faible que la limite des « zones faiblement contaminées » (zones où les populations n'ont pas été évacuées). « L'explosion est restée très concentrée près de l'installation, et les retombées ont été dispersées par de grands panaches de fumée, qui sont montés très haut dans l'atmosphère et ont traversé l'Europe, diluant leur concentration… Ça aurait pu être bien pire »<ref>Modèle:Lien web.</ref>.

L'IRSN précise que Modèle:Citation

Des incendies de forêts et de tourbières tels que ceux qui ont accompagné la canicule européenne de 2010 en Russie sont susceptibles de réinjecter brutalement dans l'atmosphère et les eaux superficielles et souterraines des radionucléides ou du plomb qui étaient restés piégés jusque-là dans la biomasse et la nécromasse fongique, lichénique, animale et végétale.

Après l’accident, de nombreux obstétriciens ont jugé plus prudent de mettre un terme à une grossesse, ou ont été incapables de résister à la demande de la future mère, alors que les doses de radiation étaient bien en dessous de celles susceptibles de produire un quelconque effet in utero, mais en quelques semaines les idées fausses ont été largement propagées au sein de la profession médicale<ref name="Trichopoulos1987" />. Néanmoins, selon l'Agence internationale de l'énergie atomique entre 100 000 et 200 000 avortements en Europe de l'Ouest ont été provoqués à la suite de cette catastrophe<ref name="Trichopoulos1987">Modèle:Article.</ref>,<ref>Modèle:Article.</ref>.

En 2000, la plus grande partie des zones contaminées ne présente plus de danger particulier d'irradiation. La dose causée par les retombées radioactives de l'accident ne dépasse encore Modèle:Nobr par an que dans les zones qui avaient été fortement contaminées (zones de contrôle permanent), ce qui concerne Modèle:Unité<ref name="IAEA" />. C'est l'ordre de grandeur du niveau d'exposition dû à la radioactivité naturelle (Modèle:Unité en moyenne, jusqu'à dix fois plus dans certaines régions, sans effets détectables sur les populations). Le Modèle:Date-, un rapport de Modèle:Nobr a été produit à l'occasion du Forum Tchernobyl organisé à Vienne réunissant une centaine d'experts sous l'égide notamment de l'AIEA, de l'OMS et du PNUD : Modèle:Citation. Cette étude fut très critiquée et même qualifiée de mensongère<ref name="Kempf">Modèle:Article.</ref>. Élisabeth Cardis, chef du groupe rayonnement et cancer au Circ de Lyon, estime que, si l'on prend en compte toutes les personnes touchées par les retombées radioactives, soit Modèle:Nobr de personnes, Modèle:Citation<ref>Modèle:Article.</ref>. Les cancers devraient cependant toucher disproportionnellement les habitants de la Biélorussie, de l'Ukraine et des territoires les plus contaminés de la Russie, avec près des deux tiers des cas de cancer de la thyroïde et au moins la moitié des autres cancers<ref>Modèle:Article.</ref>. Le Modèle:Lien, quant à lui, estime que le chiffre pour le monde entier se situera entre 30 000 et 60 000 ; Greenpeace, d’autre part, évalue à 93 000 le nombre de morts en ex-URSS<ref name="Kempf" />,<ref name=":2">Modèle:Article</ref>,<ref name=":4">Modèle:Lien web</ref>.

Au cours des années 2000, le réacteur détruit sous le sarcophage reste une menace permanente. Ce premier sarcophage se détériore de jour en jour et n'est plus étanche. Il laisse filtrer les eaux de pluie qui risquent, par écoulement et infiltration naturelle, de contaminer la nappe phréatique qui se situe à l’aplombModèle:Sfn. Un nouveau sarcophage est mis en place en 2016.

Modèle:Article détaillé

Le rapport de l'Agence internationale de l'énergie atomique (AIEA) établi en 2005 recense près de Modèle:Nobr par syndrome d'irradiation aiguë directement attribuables à l'accident et il estime que 5 % des décès de liquidateurs serait lié à la catastrophe. Dans les populations locales, Modèle:Nombre ont été officiellement diagnostiqués entre la catastrophe et 2002, dont la grande majorité est attribuée à la catastrophe. Cependant, ce rapport estime que le nombre de morts supplémentaires par cancer dans ces populations (estimé à Modèle:Nombre d'après les modèles de radioprotection) est trop faible par rapport à la mortalité naturelle (Modèle:Nombre, soit 4 % d'accroissement) pour être détectable par les outils épidémiologiques disponibles<ref name="IAEA">Modèle:Lien web. Modèle:Commentaire biblio SRL.</ref>.

Décès

Modèle:Article détaillé

Rapports officiels des agences onusiennes

Selon le rapport officiel de l'Organisation mondiale de la santé<ref name="OMS |Tchernobyl : l’ampleur réelle de l’accident">Modèle:Lien web.</ref> de 2005, jusqu’à Modèle:Nombre au maximum pourraient éventuellement à terme décéder des suites d'une radio‑exposition consécutive à la catastrophe de Tchernobyl, dans le cas d'une échelle linéaire sans seuil (les échelles « linéaires avec seuil » ou avec effet d'Modèle:Lien, donnent un maximum théorique encore beaucoup plus faible).

Selon le rapport de l'UNSCEAR de 2008Modèle:Sfn, les décès attribuables « de façon fiable » à l’exposition au rayonnement produit par l'accident sont estimés à Modèle:Nobr et se déclinent ainsi :

  • Modèle:Nobr du syndrome d’irradiation aiguë (parmi le personnel de l'usine et les pompiers) ;
  • Modèle:Nobr dans la population environnante mortes de cancer de la thyroïde (à la suite d’ingestion de lait contaminé par l'iode 131, avant l’application des mesures préventives).

Parmi les survivants du syndrome d'irradiation aiguë, 19 sont morts entre 1986 et 2006, mais les causes des décès sont diverses et généralement pas associées à l'exposition aux radiations.

Le rapport conclut que Modèle:Citation. Modèle:Refnec. Cependant ce rapport a été publié dans des revues scientifiques à comités de lecture dits « peer reviewed », ce qui n'est pas systématiquement le cas des contre-analyses.

Analyses venant de diverses origines par ordre croissant de décès
  • Selon l'Américain Michael Shellenberger, les chiffres des morts liées à la catastrophe de Tchernobyl sont surestimés : les radiations ne seraient pas aussi nocives et auraient tué au maximum Modèle:NobrModèle:Sfn,<ref name="shellenberg">Modèle:Lien web.</ref>.
  • L'article de vérification des faits du journaliste scientifique Olivier Monod paru en 2019 dans le quotidien français Libération, lequel ne prétend pas trancher entre les différentes conclusions, avance Modèle:Citation morts<ref>Modèle:Lien web.</ref>.
  • Selon le gouvernement allemand, il existe des chiffres très différents sur les décès : selon Greenpeace<ref name="green">Modèle:Lien web.</ref>,<ref>{{#invoke:Langue|indicationDeLangue}} Modèle:Langue Modèle:Pdf, Modèle:P..</ref>,<ref name=":2" />,<ref name=":4" />, la catastrophe causera de l'ordre de Modèle:Nombre (Modèle:Nombre) sur Modèle:Nobr, selon l'IPPNW plus de Modèle:Nombre seraient décédés et cette association prévoit près de 240 000 nouveaux cas de cancer en Europe d’ici 2056. Le gouvernement allemand montre donc qu'il y a d'énormes divergences d'appréciation, affirme qu'il n'existe pas de danger pour la population allemande, mais que les conséquences de la catastrophe l'ont conduit à sortir progressivement du nucléaire<ref>Modèle:Lien web.</ref>.
  • Selon Kate Brown, les conséquences réelles du désastre sont largement méconnues et sous-estimées : il y aurait, par exemple, jusqu'à Modèle:Nombre en Ukraine selon certains scientifiques de ce pays<ref name="Libé Brown">Modèle:Lien web.</ref>.
  • Près d'un million selon le Modèle:Lien (Modèle:Langue de Moscou), V.B. Nesterenko et A.V. Nesterenko (Modèle:Langue de Minsk) de 2007Modèle:Sfn,<ref name="ladocumentationfrancaise">Modèle:Lien web.</ref>.
  • En 2011, Helen Caldicott, militante anti-nucléaire, docteur en médecine de nationalité australienne, s’appuie sur les chiffres du rapport de Yablokov, Nesterenko et Nesterenko (publié en anglais en 2009) qui estime qu’un million de personnes sont déjà décédées des suites de l’accident<ref>Modèle:Lien web.</ref>.

Techniques

Après l'accident de Tchernobyl, un projet de construction d'une centrale nucléaire en Crimée fut abandonné<ref>Modèle:Lien web.</ref>.

La catastrophe a accéléré la recherche sur les réacteurs RBMK et leur modernisation. Elle a également mis en évidence la nécessité d'une enceinte de confinement autour des installations, dont l'efficacité avait été pleinement démontrée lors de l'accident de la centrale nucléaire de Three Mile Island. Le Modèle:Date, la dernière tranche encore active de la centrale de Tchernobyl a été arrêtée définitivement, sous la pression de l'Union européenne et en échange d'aides financières<ref>Modèle:Lien web.</ref>,<ref>Modèle:Lien web.</ref>.

Confinement (sarcophages) et démantèlement du réacteur accidenté

Modèle:Article détaillé Depuis sa construction, l'eau et la neige s'infiltrent dans le premier « sarcophage » : le béton a souffert de la radioactivité, et la structure a été bâtie sur des fondations préexistantes ou sur des structures instables dont l'état n'est plus connu avec précision et est aujourd'hui invérifiable car non accessible à cause de la radioactivité et des débris. En 1997, la communauté internationale jugeait qu'une intervention sur le site de Tchernobyl était nécessaire. Il s'agissait de stabiliser le premier sarcophage, préparer le site à l’édification du nouveau sarcophage et procéder à sa construction.

En 1999, une première série de travaux de consolidation du toit a été réalisée par les Ukrainiens, en attendant la décision de réalisation du nouveau sarcophage. Au début des études SIP (Modèle:Lang), en 1998<ref>Modèle:Lien web.</ref>, la priorité a été donnée au renforcement du toit qui menaçait de tomber et risquait ainsi de recontaminer le site.

Entre 2003 et 2006, des travaux de construction d'un bâtiment de vestiaire, d'un hôpital, d'un centre d'entraînement, d'une base de construction, des réseaux d'alimentation en eau et énergies ainsi que d'un bâtiment administratif ont été réalisés. En 2006, à la suite d'un appel d'offres, une entreprise russe a procédé à la stabilisation des parties instables du premier sarcophage. En 2001, le concept « arche de Tchernobyl » a été choisi. Entre 2002 et 2003, un avant-projet a été réalisé. Un appel d'offres international a été lancé le Modèle:Date- pour la conception, la construction et la mise en service du nouveau confinement. Le consortium Novarka mené par les groupes français Vinci et Bouygues est chargé des travaux. Les travaux de terrassement ont débuté en 2006 et la construction de l'arche en avril 2012. La désormais emblématique tour de refroidissement (qui se trouve être aussi le logo de Novarka) a été démontée lors des travaux car sa base se trouvait sous le futur sarcophage. De plus, cette tour, plus entretenue depuis la catastrophe, menaçait de s'écrouler sur le toit du sarcophage et de le faire s'effondrer. En Modèle:Date-, le toit d'un bâtiment proche du sarcophage s'est effondré sous le poids de la neige<ref>Modèle:Lien web.</ref>.

En novembre 2016 est mis en place un sarcophage, « un bâtiment mesurant Modèle:Nobr de long pour Modèle:Nobr de haut et un poids total de Modèle:Nombre équipé »<ref>Modèle:Lien web.</ref>. Le coût total de ce projet atteint Modèle:Nombre d'euros, bien au-delà des Modèle:Nobr d'euros initialement estimés, payés en majeure partie par les pays du G7 et l'Ukraine. Son financement a été géré par la Banque européenne pour la reconstruction et le développement (BERD).

Ce nouveau sarcophage, en forme d’arche dont la mise en service a été annoncée en juillet 2019<ref>Le sarcophage recouvrant la centrale de Tchernobyl a été mis en service, rts, 10 juillet 2019</ref>, doit abriter des ateliers destinés à décontaminer, traiter et conditionner les matériaux radioactifs en vue d'un futur stockage<ref>Modèle:Article.</ref>. Selon un spécialiste de l'IRSN, le démantèlement nécessitera plusieurs décennies et aucune stratégie n'est encore arrêtée<ref>Modèle:Lien web.</ref>, mais, selon la revue anglophone Science : Modèle:CitationModèle:Refn,<ref>Modèle:Lien web.</ref>.

Économiques

L’accident nucléaire a eu un énorme impact économique dans les trois pays. La plus grande conséquence économique est due aux pertes de terrains agricoles et de forêts (Modèle:Nombre de terrains agricoles et Modèle:Nombre de forêts ont dû être abandonnés) et d’établissements ruraux. La situation économique problématique consécutive à la chute de l’URSS a également été aggravée par la perte des sources de revenus secondaires qu’étaient la chasse, la pêche…<ref name="IRSN - Sommaire" />

Selon Mikhaïl Gorbatchev, en 1991 l'ensemble de la liquidation a été évalué à Modèle:Nobr de roubles<ref name=":0" />, soit Modèle:Nobr de dollars de l'époqueModèle:Refnec.

En 2011, le coût de la catastrophe de Tchernobyl a été évalué à 175 Milliard de dollars<ref name=":10">Modèle:Ouvrage</ref>

Le nouveau sarcophage, construit avec l'aide d'un financement européen, a coûté Modèle:Nombre d'euros. Il devrait tenir un siècle. Depuis fin 2016, sa structure métallique recouvre le premier sarcophage de béton et de plomb construit à la hâte par les Soviétiques, destiné, lui, à durer Modèle:Nobr.

Sur Modèle:Nobr, plusieurs rapports cités par l'Agence internationale de l'énergie atomique (IAEA) estiment le coût de la catastrophe de Tchernobyl à plusieurs centaines de milliards de dollars<ref>Modèle:Lien web.</ref>Modèle:Secnec. Pour sa part, le directeur de l'organisation antinucléaire Greenpeace France, Pascal Husting, chiffre le coût total de Tchernobyl à Modèle:Unité<ref group="alpha">Pascal Hunting a fait cette déclaration lors de l'émission On est pas couché sur France 2 le 26 mars 2011 : Modèle:Citation.</ref>Modèle:Secnec.

Écologiques

Des divergences subsistent au sujet de l'évaluation à long terme des conséquences sur le milieu naturel : la contamination de longue durée de plantes forestières et de gibier, une forte mortalité d'animaux invertébrés ou mammifères, ainsi qu'un impact sur la durée de vie des conifères ont été évoqués<ref>Modèle:Lien web.</ref>. Certains médias évoquent une nouvelle biodiversité consécutive à l'abandon par l'homme des environs de la centrale<ref>Modèle:Lien web.</ref>. En effet, moins de quinze ans après l'accident, on constate que la nature a repris petit à petit ses droits dans les zones contaminées. Presque toutes les espèces animales se multiplient librement. Cigognes, grues grises et toutes sortes de poissons et oiseaux refont leur apparition. Selon Robert Baker, de l'université Tech au Texas, Modèle:CitationModèle:Sfn. Cependant, ce point de vue est sujet à débat<ref>Modèle:Lien web.</ref>. Selon Kate Brown, Modèle:Citation<ref name="Libé Brown"/>.

Critique du système soviétique

Pour l'historien Nicolas Werth, Modèle:Citation

Alors que l'URSS sous la direction de Mikhaïl Gorbatchev a amorcé un certain nombre de transformations, l'accident nucléaire de Tchernobyl montre au grand jour les faiblesses scientifiques, techniques et de sécurité du pays. Il éclaire d'une lumière crue l'incurie du système en place. Ainsi pour Valeri Legassov, l'accident de Tchernobyl fut Modèle:Citation<ref name="Moullec">Modèle:Article.</ref>.

Développement des régions touchées

Alors que, vingt ans après, la vie dans les régions touchées reste marquée par la catastrophe<ref>Modèle:Ouvrage.</ref>, le Programme des Nations unies pour le développement (PNUD) a lancé en 2003 un programme spécifique pour le développement des régions touchées par l'accident intitulé Modèle:Lang (« Programme pour le développement et le renouveau de Tchernobyl »).

Effets juridiques

Tirant les leçons des effets catastrophiques de l'absence de transparence et de communication les jours qui ont suivi l'explosion du réacteur Modèle:N° de Tchernobyl (fin Modèle:Date-), l'AIEA a organisé la rédaction et l'adoption rapide d'une Convention sur la notification rapide d'un accident nucléaire ainsi qu'une Convention sur l'assistance en cas d'accident nucléaire ou de situation d'urgence radiologique (dont l'adoption sera plus lente)<ref>Kiss A.C (1986) L'accident de Tchernobyl : ses conséquences au point de vue du Droit international [archive]. Annuaire français de droit international, 32(1), 139-152.</ref>.

Un procès s'est déroulé du 7 au Modèle:Date- dans une salle d'audience provisoire installée à la Maison de la Culture de la ville de Tchernobyl. Cinq employés de l'usine : Anatoli Diatlov (l'ancien ingénieur en chef adjoint), Viktor Brioukhanov (l'ancien directeur de l'usine), Nikolaï Fomine (l'ancien ingénieur en chef), Boris Rogojine (le directeur d'équipe du réacteur 4) et Alexandre Kovalenko (le chef du réacteur Modèle:N°) ainsi qu'Iouri Laouchkine, inspecteur du Gosatomenergonadzor (Comité d'État de l'URSS sur la surveillance de la conduite sûre du travail dans l'énergie atomique) ont été condamnés respectivement pour les trois premiers à dix ans, puis cinq, trois et deux ans dans des camps de travail du Goulag<ref>Officials Are Sentenced to Labor Camp,The New York Times</ref>. La condamnation est publiée par la radio d'État après deux jours, mais passée sous silence par les autres médias<ref>Modèle:Lien web.</ref>. Les familles d'Aleksandr Akimov, Leonid Toptounov et Valery Perevoztchenko avaient reçu des convocations officielles, mais les poursuites contre les employés avaient pris fin à leur mort.

Anatoli Diatlov a été reconnu coupable « de mauvaise gestion criminelle d'entreprises potentiellement explosives » et condamné à dix ans d'emprisonnement (il en purgera trois) pour son rôle dans la surveillance de l'expérience, qui a joué dans l'accident.

Dans les arts et la culture populaire

Filmographie

Documentaires

Films

Séries télévisées

  • Chernobyl, une mini-série de cinq épisodes d'une heure, produite en 2019 par HBO en partenariat avec Sky. Elle raconte le début de la catastrophe et sa gestion progressive par les autorités et les secours<ref>Modèle:Lien web.</ref>.

Romans

Bandes dessinées

Musique

  • L'album Killing Technology du groupe de thrash metal canadien Voivod, sorti un an après l'accident, se base en partie sur celui-ci.
  • En 2010, la chanteuse Alyosha représente l'Ukraine à l'Eurovision avec sa chanson Sweet People, qui parle de Tchernobyl. Un clip fut tourné dans la ville de Pripyat, le réalisateur refusant de tourner avec un enfant dans Tchernobyl.
  • En 2014, Steve Rothery sort un album intitulé The Ghosts of Pripyat.

Jeux vidéo

Plusieurs jeux vidéo évoquent la catastrophe de Tchernobyl :

Annexes

Bibliographie

Modèle:Légende plume

Articles connexes

Liens externes

Modèle:Autres projets

Notes et références

Modèle:Traduction/Référence

Notes

Modèle:Références

Références

Modèle:Références

Modèle:Palette

Modèle:Portail